Civil Engineering Reference
In-Depth Information
Welding Parameters For Data Set 2:
Type: bead in groove with flat top surface
Weld speed V B : 3.81
3
10
m/s
Average energy input Q / D : 2.159
10 3
kJ/m
Bead depth below surface: 9.5 mm
Bead width at surface: 15 mm
Plate thickness: 0.0254 m
Maximum length of trailing solidification boundary at surface: 14.5 mm
Power input (Q/D) V B : 8.226
10 3
4
10
Grid spacing:
m
Time interval for passage of discrete volume elements past a given point:
l
2
2
10
t
l / V B
2.625
s
Appendix B
Derivation of Weighted Finite-Sum Representation
of Pseudo Steady State Based on Rosenthal Solution
According to the Rosenthal solution of Eq. (6.1) for thick plate boundary conditions, the change in
temperature at a position p due to an energy source at position p
1 whose power is q p 1 , distance from
p is R and speed relative to the workpiece is V B is
q p 1
V B
2
T p
----------------exp
----------
(
Rx
)
,
(6.B1)
2
k p R
p
where
k p
p
-------------------------------.
(6.B2)
T ()
C p T ()
For a uniform discretization of the solution domain corresponding to a node separation of
l , it follows
that
3
T ()
C p T ()
(
T p
T p 1
)
()
l
q p 1
--------------------------------------------------------------------------,
(6.B3)
t
l / V B . Next, we note that for a discrete partitioning of the temperature field,
a change in temperature at position p is related to the changes in temperature of its nearest neighbor
positions by the expression
R
l , x
l and
y
6
1
T p
--------
i
T i
,
(6.B4)
6
p
i
1
where
T i
T i
T p . Equating Eq. (6.B1) and Eq. (6.B2), it follows that
6
(
T p
T p 1
)
V B
l
V B
l
1
--------
------------------------------------------
------------
i T i
(
T p
)
exp
(6.B5)
6
p
2
p
p
i
1
Search WWH ::




Custom Search