Biomedical Engineering Reference
In-Depth Information
2. Andreu, D., Rivas, L.: Animal antibacterial peptides: an overview. Biopolymers 47 , 415-433
(1999)
3. Anishkin, A., Sukharev, S., Colombini, M.: Searching for the molecular arrangement of trans-
membrane ceramide channels. Biophys. J. 90 , 2414-2426 (2006)
4. Apell, H.J. & Karlish, S.J.: Functional properties of Na, K-ATPase, and their structural impli-
cations, as detected with biophysical techniques. J. Membr. Biol. 180 , 1-9 (2001)
5. Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., and Ovchinnikov, Y.A.: Biol. Membr. 3 , 437-62
(1986)
6. Ashrafuzzaman, Md. and Tuszynski, J.A.: Ion pore formation in membranes due to com-
plex interactions between lipids and antimicrobial peptides or biomolecules. Handbook on
Nanoscience, Engineering and nanotechnology . Edited by Goddard, Brenner, Lyshevki and
Iafrate; Taylor & Francis Group (CRC press) (2011)
7. Ashrafuzzaman, Md., Tseng, C.-Y., Tuszynski, J.A. Chemotherapy drugs form ion pores in
membranes due to physical interactions with lipids. (submitted) (2011)
8. Ashrafuzzaman, Md., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs Thiocolchico-
side and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores. J. of Physics:
Conf. Series 329 (012029), 1-16 (2011)
9. Ashrafuzzaman, Md., Andersen, O.S., and McElhaney, R.N. The antimicrobial peptide grami-
cidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.
Biochim. Biophys. Acta 1778 , 2814-2822 (2008)
10. Ashrafuzzaman, Md., Lampson, M.A., Greathouse, D.V., Koeppe II, R.E., Andersen, O.S.:
Manipulating lipid bilayer material properties by biologically active amphipathic molecules.
J. Phys.: Condens. Mat. 18 , S1235-1255 (2006)
11. Ashrafuzzaman, M. and Tuszynski, J. Regulation of channel functions due to coupling with
a lipid bilayer. Biophys. J. 98 , 51a (2010) and J. Comp. Nanosci. 9, 564-570 (2012)
12. Bechinger, B. structure and functions of channel-forming peptides: Magainins, Secropins,
Melittin and Alamethicin. J. Membr. Bio. 156 : 197-211, (1997)
13. Bechinger, B. (1999) The structure, dynamics and orientation of antimicrobial peptides in
membranes by multidimensional solid-state NMR spectroscopy, Biochim. Biophys. Acta
1462, 157-183.
14. S.E. Blondelle, R.A. Houghten, Biochemistry 31 (1992) 12688-12694.
15. Boheim, G. (1974) Statistical analysis of alamethicin channels in black lipid membranes.
J. Mem. Biol. 19:277-303.
16. Brown, M.F.: Modulation of rhodopsin function by properties of the membrane bilayer. Chem.
Phys. Lipids 73: 159-180 (1994)
17. Castano, S., Desbat, B., Laguerre, M., Dufourq, J.: Structure, orientation and affinity for
interfaces and lipids of ideally amphipathic lytic L i K j (i=2j) peptides. Biochim. Biophys.
Acta 1416 , 176-194 (1999)
18. Cruciani, R.A., Barker, J.L., Durell, S.R., Raghunathan, G., Guy, H.R., Zasloff, M., Stanley,
E.F.: Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer
membranes. Eur J Pharmacol. 226(4) , 287-296 (1992)
19. Gadsby, D.C., Rakowski, R.F. & De Weer, P.: Extracellular access to the Na, K Pump: Pathway
similar to ion channel. Science 260 , 100-103 (1993)
20. Garty, H., Karlish, S.J.: Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68 ,
431-459 (2006)
21. Gazit, E., Lee, W.J., Brey, P.T., Shai, Y.: Biochemistry 33 , 10681-10692 (1994)
22. Geering, K.: The functional role of β subunits in oligomeric P-type ATPases. J. Bioenerg.
Biomembr. 33 , 425-438 (2001)
23. Glynn, I. M.: Annual review prize lecture. 'All hands to the sodium pump'. J. Physiol. (Lond.)
462 , 1-30 (1993)
24. Grant, E., Beeler, T.J., Taylor, K.M.P., Gable, K., Roseman, M.A.: Biochemistry 31 , 9912-
9918, (1992)
25. Gruner, S.M.: Lipid membrane curvature elasticity and protein function in Biologically
Inspired Physics, edited by L. Peliti (New York: Plenum): 127-135 (1991)
Search WWH ::




Custom Search