Java Reference
In-Depth Information
hexadecimal system, base 16. In the hexadecimal system, we run out of the usual
one-character digits so we use the first six capital letters of the alphabet for the
last six digits.
Each of these systems uses a positional notation to represent the integers.
For example, consider the decimal number 536, which, to make clear that a base-
10 number is meant, we write as:
(536) 10
The 6 is in the units position, the 3 is in the tens position, and the 5 is in the hun-
dreds position. This number is a representation for the quantity
5*10 2 + 3*10 1 + 6*10 0
Each of the digits 5 , 3 , and 6 is a base- 10 digit, i.e. is in the range 0..9 . A
k -digit decimal integer in the form d k-1 ...d 2 d 1 d 0 , where each d i is in the
range 0..9 and d k-1 is not 0 , represents the integer:
d k-1 *10 k-1 + ... + d 1 *10 1 + d 0 *10 0
Here is an integer in the binary, or the base-2, number system:
0
0
0
0
1
1
1
1
2 0
2
2
2
10
2 1
3
3
3
11
4
4
4
100
2 2
5
5
5
101
6
6
6
110
7
7
7
111
8
10
8
1000
2 3
9
11
9
1001
10
12
A
1010
11
13
B
1011
12
14
C
1100
13
15
D
1101
14
16
E
1110
15
17
F
1111
2 4
16
20
10
10000
20
24
14
10100
2 6
64
80
40
1000000
decimal
octal