Environmental Engineering Reference
In-Depth Information
R EFERENCES
[1] Cooney, C. L. (1983). Bioreactors: design and operation , Science 19:728-740.
[2] Sittig, W. (1982). The present state of fermentation reactors , J Chem Tech Biotech 16:
16-21.
[3] Hochfeld, W. L. (1994). Growth & Synthesis: Ferm enters, Bioreactors, & Biomolecular
Synthesizers . Interpharm Press.
[4] Rose, A. H. (1979). History and scientific basis of large-scale production of biomass , in
Economic Microbiology (A. H. Rose, Ed. ). Academic Press, London, pp 1-29.
[5] Majewski, R. A., and M. M. Domach (1990). Simple constrained optimization view of
acetate overflow in E. coli, Biotechnol Bioeng 35:732-738.
[6] Liao, J. C., and E. N. Lightfoot (1988). Characteristic reaction paths of biochemical
reaction systems with time scale separation, Biotechnol Bioeng 31:847-854.
[7] Delgado, J., and J. C. Liao (1992). Determination of flux control coefficients from
transient metabolite concentrations , Biochem J 282:919-927.
[8] Stephanopoulos, G., A. Aristidou, and J. Nielsen (1998) Metabolic Engineering:
Principles and Methodologies . Academic Press.
[9] Nielsen, J., and J. Villadsen (1994). Bioreaction Engineering . Plenum Press, New
York.
[10] Weichert, W., M. Moellney, N. Iserman, M. Wurzel, and A. de Graaf (1999).
Biodirectional reaction steps in metabolic networks: III. Explicit solution and analysis
of isotopomer labelling systems , Biotechnol Bioeng 66:69-85.
[11] Varma, A., B. W. Boesch, and B. O. Palsson (1993). Stochiometric interpretation of E.
coli glucose catabolism under various oxygenation rates, Appl Environ Microbiol
59:2465-2473.
[12] Varma, A., and B. O. Palsson (1993). Metabolic capabilities of E. coli II. Optimal growth
patterns , J Theor Biol 165:503-522.
[13] Varma, A., and B. O. Palsson (1994). Stochiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type E. coli W 3110, Appl
Environ Microbiol 60:3724-3731.
[14] Sonnleitner, B., and O. Kappeli (1986). Growth of S. cerevisiae is controlled by its
limited respiratory capacity: formulation and verification of a hypothesis , Biotechnol
Bioeng 28:927-937.
[15] Ishii, N., M. Robert, Y. Nakayama, A. Kanai, and M. Tomita (2004). Toward large-
scale modeling of the microbial cell for computer simulation, J Biotechnol 113:281-
294.
[16] Bitton, G. (1999). Wastewater Microbiology . Wiley-Liss.
[17] Bhat, N., and T. J. McAvoy (1990). Use of neural nets for dynamic modelling and control
of chemical process systems , Comput Chem Eng 14:573-582.
[18] Gadkar, K. G., S. Mehra, and J. Gomes (2005). On-line adaptation of neural networks
for bioprocess control , Comput Chem Eng 29:1047-1057.
[19] Zadeh, L. A. (1965). Fuzzy Sets, Inform Contr 8:338-353.
[20] Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and
decision processes , IEEE Trans Sys Man Cybern 3:28-44.
Search WWH ::




Custom Search