Environmental Engineering Reference
In-Depth Information
[54] Heidelberg, J. F., and et al. (2002). Genome sequence of the dissimilatory metal ion-
reducing bacterium Shewanella oneidensi, Nature Biotechnol 20:1118-1123.
[55] Meyer, J., and J. Gagnon (1991). Primary structure of hydrogenase I from
Clostridium pasteurianum, Biochem 30:9697-9704.
[56] Nicolet, Y., C. Piras, P. Legrand, C. E. Hatchikian, and J. C. Fontecilla-Camps (1999).
Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual
coordination to an active site Fe binuclear center , Struct Fold Des 7:13-23.
[57] Flynn, T., M. Ghirardi, and M. Seibert (1999). Isolation of Chlamydomonas mutants with
improved oxygen tolerance, American Chemical Society General Meeting, New Orleans,
LA.
[58] Ghirardi, M., and M. Seibert (1999). Process for selection of oxygen-tolerant algal
mutants that produce H2 under aerobic conditions, U.S. Patent 5,871,952.
[59] Ghirardi, M. L., T. Flynn, M. Forestier, A. Iyer, A. Melis, P. Danielson, and M. Seibert
(1999). Generation of C. reinhardtii mutants that photoproduce H2 from H2O in the
presence of O2 , in G. Garab, Ed. Photosynthesis: Mechanisms and Effects. Kluwer
Academic Publishers, The Netherlands, pp 1959-1962.
[60] Flynn, T., M. Ghirardi, and M. Seibert (2002). Accumulation of O2-tolerant phenotypes
in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of
chemical mutagenesis and selection , Intl J Hydrogen Energy 27:1421-1430.
[61] Flynn, T., M. L. Ghirardi, and M. Seibert (2000). Strategies for Improving Algal
Hydrogen Production, in BioHydrogen II (J. Miyake, T. Matsunaga, and A. San
Pietro, Eds.). Academic Press, New York, pp 65-76.
[62] Ghirardi, M. L. (2004). Personal communication .
[63] van der Westen, H. M., S. G. Mayhew, and C. Veeger (1978). Separation of
hydrogenase from intact cells of Desulfovibrio vulgaris: Purification and properties ,
FEBS Letters 86:122-126.
[64] Pierik, A. J., M. Hulstein, W. R. Hagen, and S. P. Albracht (1998). A low-spin iron with
CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases ,
Eur J Biochem 25 8:572-578.
[65] Mann, M. K., and J. S. Ivy (1998). Technoeconomic analysis of algal and bacterial
hydrogen production systems: methodologies and issues , in BioHydrogen (O. Zaborsky,
Ed.). Plenum Press, New York, pp 415-424.
[66] Crameri, A., E. Whitehorn, E. Tate, and W. P. C. Stemmer (1996). Improved green
fluorescent protein by molecular evolution using DNA shuffling , Nature Biotechnol 14:3
15-3 19.
[67] Crameri, A., G. Dawes, E. Rodriguez Jr., S. Silver, and W. P. C. Stemmer (1997).
Molecular evolution of an arsenate detoxification pathway by DNA shuffling , Nature
Biotechnol 15:436-438.
[68] Patten, P. A., R. J. Howard, and W. P. C. Stemmer (1997). Applications of DNA shuffling
to pharmaceuticals and vaccines , Curr Opin Biotechnol 8:724-733.
[69] Zhang, J.-H., G. Dawes, and W. P. C. Stemmer (1997). Directed evolution of a
fucosidase from a galactosidase by DNA shuffling and screening , Proc Natl Acad
Sci USA 94:4504-4509.
[70] Chang, C., T. Chen, B. Cox, G. Dawes, W. P. C. Stemmer, J. Punnonen, and P. Patten
(1999). Evolution of a cytokine using DNA family shuffling , Nature Biotechnol 17:793-
797.
Search WWH ::




Custom Search