Environmental Engineering Reference
In-Depth Information
commercialization efforts, cited by multiple researchers, is in fact the limited communication
between scientists who study biohydrogen systems and engineers who develop hydrogen fuel
cell technologies. Great advancements are potentially achievable by encouraging this form of
collaboration, in particular [34, 5].
R EFERENCES
[1] United States Department of Energy (2001). Hydrogen Information Network ,
http://www.eren.doe.gov/hydrogen/.
[2] Dunn, S. (2002). Hydrogen future: Toward a sustainable energy system , Intl J Hydrogen
Energy 27:235-264.
[3] Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen
energy systems , Intl J Hydrogen Energy 27:265-285.
[4] Elam, C., C. Padro, G. Sandrock, A. Luzzi, P. Lindblad, and E. Hagen (2003). Realizing
the hydrogen future: The International Hydrogen Agency's efforts to advance hydrogen
energy technologies , Intl J Hydrogen Energy 28:601-607.
[5] Levin, D. B., L. Pitt, and M. Love (2004). Biohydrogen production: Prospects and
limitations to practical application, Intl J Hydrogen Energy 29:173-185.
[6] Zaborsky, O., Ed. (1998). BioHydrogen. Plenum Press, New York.
[7] Blankenship, R. (2002). Molecular Mechanisms of Photosynthesis . Blackwell Science,
Williston, VT.
[8] Gottschalk, G. (1986). Bacterial Metabolism , 2nd Edition. Springer Verlag, New
York.
[9] Gfeller, R. P., and M. Gibbs (1984). Fermentative metabolism of Chlamydomonas
reinhardtii I: Analysis of fermentative products from starch in dark and light , Plant
Physiol 75:212-218.
[10] Ghirardi, M. L., L. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, and A.
Melis (2000). Microalgae: A green source of renewable H2 , Trends Biotech 18:506-
511.
[11] Happe, T., A. Hemschemeier, M. Winkler, and A. Kaminski (2002). Hydrogenases in
green algae: Do they save the algae's life and solve our energy problems? , Trends Plant
Sci 7:246-250.
[12] Lopes Pinto, F. A., O. Troshina, and P. Lindblad (2002). A brief look at three decades of
research on cyanobacterial hydrogen evolution , Intl J Hydrogen Energy 27:1209-1215.
[13] Cournac, L., G. Guedeney, G. Peltier, and P. M. Vignais (2004). Sustained
photoevolution of molecular hydrogen in a mutant of Synechocystis sp . strain PCC 6803
deficient in the Type I NADPH-dehydrogenase complex , J Bacteriol 186:1737-1746.
[14] Stal, L. J., and R. Moezelaar (1997). Fermentation in cyanobacteria , FEMS Microbiol
Rev 21:179-211.
[15] Troshina, O., L. Serebryakova, M. Sheremetieva, and P. Lindblad (2002). Production of
H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during
fermentation , Intl J Hydrogen Energy 27:1283-1289.
[16] Garrett, R., and C. Grisham (1999). Chapter 26. Nitrogen Acquisition and Amino
Acid Metabolism , in Biochemistry 2/e. Harcourt, Brace & Co.
Search WWH ::




Custom Search