Environmental Engineering Reference
In-Depth Information
[17] United States Department of Energy (2004). Pretreatment Technology Evaluation,
Office of Energy Efficiency and Renewable Energy, Biomass Program,
http://www.eere.energy.gov/biomass/technology_evaluation.html.
[18] Golias, H., G. J. Dumsday, G. A. Stanley, and N. B. Pamment (2002). Evaluation of a
recombinant Klebsiella oxytoca strain for ethanol production from cellulose by
simultaneous saccharification and fermentation: comparison with native cellobiose-
utilising yeast strains and performance in co-culture with therm otolerant yeast and
Zymomonas mobilis, J Biotechnol 96:155-168.
[19] Himmel, M. E., J. O. Baker, and J. N. Saddler (2001). Glycosyl hydrolases for biomass
conversion . American Chemical Society : Distributed by Oxford University Press,
Washington, DC.
[20] Himmel, M. E., W. S. Adney, J. O. Baker, R. A. Nieves, and S. R. Thomas (1996).
Cellulases: Structure, Function, and Application , in Handbook on Bioethanol (C. E.
Wyman, Ed.). Taylor & Francis, Washington, DC, pp 143-161.
[21] Dien, B., R. Hespell, H. Wyckoff, and R. Bothast (1998). Fermentation of hexose and
pentose sugars using a novel ethanologenic Escherichia coli strain, Enzyme Microb
Technol 23:366-371.
[22] Toivari, M., A. Aristidou, L. Ruohonen, and M. Penttila (2001). Conversion of xylose to
ethanol by recombinant Saccharomyces cerevisiae : Importance of xylulokinase (XKS1)
and oxygen availability , Metabolic Eng 3:236-249.
[23] McMillan, J. D., M. M. Newman, D. W. Templeton, and A. Mohagheghi (1999).
Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar
hardwood to ethanol using xylose-fermenting Zymomonas mobilis, Appl Biochem
Biotechnol 77/79:649-665.
[24] Teixeira, L. C., J. C. Linden, and H. A. Schroeder (2000). Simultaneous saccharification
and cofermentation of peracetic acid-pretreated biomass , Appl Biochem Biotechnol
84/86:111-127.
[25] McKendry, P. (2002). Energy production from biomass. Part 3: Gasification
technologies , Bioresource Technology 83:55-63.
[26] Ljungdahl, L. G. (1986). The autotrophic pathway of acetate synthesis in acetogenic
bacteria , Annu Rev Microbiol 40:415-450.
[27] Wood, H. G., S. W. Ragsdale, and E. Pezacka (1986). The acetyl-CoA pathway of
autotrophic growth , FEMS Microbiol Rev 39:345-362.
[28] Abrini, A., H. Naveau, and E. J. Nyns (1994). Clostridium autoethanogenum , sp. nov.,
an anaerobic bacterium that produces ethanol from carbon monoxide , Arch Microbiol
161 :345-351.
[29] Phillips, J. R., E. C. Clausen, and J. L. Gaddy (1994). Synthesis gas as substrate for the
biological production of fuels and chemicals , Appl Biochem Biotechnol 45/46:145-154.
[30] Reed, T. B., and D. Jantzen (1979). Biomass gasification: Principles and technology ,
Energy Technology Review 67:27-90.
[31] Schell, D. J., C. J. Riley, N. Dowe, J. Farmer, K. N. Ibsen, M. F. Ruth, S. T. Toon, and
R. E. Lumpkin (2004). A bioethanol process development unit: initial operating
experiences and results with a corn fiber feedstock, Bioresource Technol 91:179-188.
[32] Lal, R. (2005). World crop residues production and implications of its use as a biofuel,
Environ Int 3 1:575-584.
Search WWH ::




Custom Search