Environmental Engineering Reference
In-Depth Information
[9] Hassler, R. A., and D. H. Doherty (1990). Genetic engineering of polysaccharide
structure: Production of variants of Xanthan Gum in Xanthamonas campestris ,
Biotechnol Progress 6:182-187.
[10] Yalpani, M. (1987). Industrial Polysaccharides: Genetic Engineering Structure /
Property Relations and Applications , Elsevier, Amsterdam.
[11] Liu, W., M. Misra, P. Askeland, L. T. Drzal, and A. K. Mohanty (2005). 'Green'
composites from soy based plastic and pineapple leaf fiber: fabrication and properties
evaluation, Polymer 46:2710-2721.
[12] Liu, W., A. K. Mohanty, P. Askeland, L. T. Drzal, and M. Misra (2004). Influence of
fiber surface treatment on properties of Indian grass fiber reinforced soy protein based
biocomposites , Polymer 45:7589-7596.
[13] United States Department of Agriculture, National Agricultural Statistics Service
(2002). usda.mannlib.cornell.edu/reports/nassr/field/pcp-bba/acrg0602.txt, June 28.
[14] Wool, R. P., and X. S. Sun (2005). Bio-Based Polymers and Composites. Elsevier
Academic Press, Burlington, MA.
[15] Yoshioka, M., and N. Shiraishi (2001). Biodegradable Plastics from Lignocellulosics,
in Wood and Cellulosic Chemistry (David Hon, N. S., Ed.). Marcel Dekker, New York,
NY.
[16] Satgé, C., R., B. Granet, P. Verneuil, Branland, and P. Krausz (2004). Synthesis and
properties of biodegradable plastic films obtained by microwave-assisted cellulose
acylation in homogeneous phase , Comptes Rendus Chimie 7:135-142.
[17] Mohanty, A. K., A. Wibowo, M. Misra, and L. T. Drzal (2004). Effect of process
engineering on the performance of natural fiber reinforced cellulose acetate
biocomposites, Compos Part A: Appl Sci Manuf 35:363-370.
[18] Chum, H. (1989). Assessment of Biobased Materials . Solar Energy Research Institute
(SERI, now NREL) - SERI R-234-3610.
[19] Fujita, M., and H. Harada (2001). Ultrastructure and Formation of Wood Cell Wall, in
Wood and Cellulosic Chemistry (David Hon, N. S., Ed.). Marcel Dekker, New York,
NY.
[20] Sakakibara, A., and Y. Sano (2001). Chemistry of Lignin, in Wood and Cellulosic
Chemistry (David Hon, N. S., Ed.). Marcel Dekker, New York, NY.
[21] Lora, J. H., and W. G. Glasser (2002). Recent industrial application of lignin: A
sustainable alternative to nonrenewable materials, J Polym Environ 10:39-48.
[22] Mai, C., O. Milstein, and A. Hüttermann (2000). Chemoenzymatical grafting of
acrylamide onto lignin, Journal of Biotechnology 79:173-183.
[23] Hu, W.-J., S. A. Harding, J. Lung, J. L. Popko, J. Ralph, D. D. Stokke, C.-J. Tsai, and
V. L. Chiang (1999). Repression of lignin biosynthesis promotes cellulose accumulation
and growth in transgenic trees , Nature Biotechnology 17:808-812.
[24] Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora (2004). Are natural fiber
composites environmentally superior to glass fiber reinforced composites? Composites
Part A: Applied Science and Manufacturing 35:371-376.
[25] Mishra, S., A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen (2004). A review
on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular
Materials and Engineering 289:955-974.
Search WWH ::




Custom Search