Biomedical Engineering Reference
In-Depth Information
In the future, the development of multiarray sensors for toxicity monitoring could find
major use as “ screening devices ” of field samples capable of recognizing and classifying a
chemical or biological toxicant. Advances in the field of bioelectronics could facilitate the
design of novel transduction systems able to collect and process more efficient analytical
signals generated on multiple channels. Current trends are directed toward miniaturiza-
tion and integration of multiarray sensors with computational techniques for data pro-
cessing and analysis that could simplify and extend toxicity monitoring outside a central
laboratory.
References
1.
Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S. (2001). Electrochemical biosensors: recom-
mended definitions and classification. Biosens. Bioelectron. 16:21-131; (b) Patel, P.D. (2002).
(Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Anal.
Chem. 21(2):96-115.
2.
Andreescu, S., Sadik, O.A. (2004). Trends and challenges in biochemical sensors for clinical
and environmental monitoring. Pure Appl. Chem. 76(4):861-878.
3.
Sadik, O.A., Wanekaya, A.K., Andreescu, S. (2004). Advanced in analytical technologies for
environmental protection and public safety. J. Environ. Monitor. 6:413-522; (b) Sadik, O.A., Witt,
D.M. (1999). Monitoring endocrine-disrupting chemicals. Environ. Sci. Technol. 1:368-374.
4.
Sadik, O.A., Land, W.H., Wanekaya, A.K., Uematsu, M., Embrechts, M.J., Wong, L.,
Leibensperger, D., Volykin, A. (2004). Detection and classification of organophosphate nerve
agents simulants using support vector machines with multiarray sensors. J. Chem. Inf. Comput.
Sci. 44:499-507.
5.
Arkhypova, V.N., Dzyadevych, S.V., Soldatkin, A.P., El'skaya, A.V., Jaffrezic-Renault, N.,
Jaffrezic, H., Martelet, C. (2001). Multibiosensor based on enzyme inhibition analysis for
determination of different toxic substances. Talanta 55:919-927.
6.
Bachmann, T.T., Leca, B., Vilatte, F., Marty, J.L., Fournier, D., Schmid, R.D. (2000). Improved
multianalyte detection of organophosphates and carbamate with disposable multielectrode
biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural
networks. Biosens. Bioelectron . 15:193-201.
7.
Bachmann, T.T., Schmid, R.D. (1999). A disposable multielectrode biosensor for rapid simul-
taneous detection of the insecticides paraoxon and carbofuran at high resolution. Anal. Chim.
Acta. 401:95-103.
8.
Albert, K.J., Lewis, N.S., Schauer, C.L., Sotzing, G.A., Stitzel, S.E., Vaid, T.P., Walt, D.R. (2000).
Cross-reactive chemical sensor arrays. Chem. Rev. 100:2595-2626.
9.
Albert, K.J., Walt, D.R. (2003). Information coding in artificial olfaction multisensor arrays.
Anal. Chem. 75:4161-4167.
10.
Jurs, P.C., Bakken, G.A., McClelland, H.E. (2000). Computational methods for the analysis of
chemical sensor array data from volatile analytes. Chem. Rev . 100:2649-2678.
11.
Lavine, B., Workman, J. (2004). Chemometrics. Anal. Chem. 76:3365-3372.
12.
Andreescu, S., Sadik, O.A., McGee, D.W., Suye, S. (2004). Autonomous multielectrode system
for monitoring the interaction of isoflavonoids with lung cancer cells. Anal. Chem .
76(8):2321-2878.
13.
Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., Chambers, J.P. (2000). A review of
molecular recognition technologies for detection of biological threat agents. Biosens.
Bioelectron. 15:549-578.
14.
Yan, F., Sadik, O.A. (2001). Enzyme-modulated cleavage of dsDNA for studying interfacial
biomolecular interactions. J. Am. Chem. Soc. 123:11335-111340.
15.
K'owino, I.O., Agarwal, R., Sadik, O.A. (2003). Novel electrochemical detection scheme for
DNA binding interactions using monodispersed reactivity of silver ions. Langmuir
19(10):4344-4350.
Search WWH ::




Custom Search