Biomedical Engineering Reference
In-Depth Information
61. Deshmukh, S. C., Aydil, E. S. (1994). Low-temperature plasma enhanced chemical vapor dep-
osition of SiO 2 . Appl. Phys. Lett . 65: 3185-3187.
62. Lewis, B. G., Paine, D. C. (2000). Applications and processing of transparent conducting
oxides. MRS. Bull . 25(8): 22-27.
63.
Ginley, D., Roy, B., Couutts, T., Readey, D., Hosono, H., Perkins, J. (2003). Non-vacuum and
PLD growth of next generation TCO materials. Thin Solid Films 445: 193-198.
64.
Alexiev, U., Marti, T., Heyn, M. P., Khorana, H. G., Scherrer, P. (1994). Surface charge of bac-
teriorhodopsin detected with covalently bound pH-indicators at selected extracellular and
cytoplasmic sites. Biochemistry 33: 298-306.
65.
Min, J., Choi, H.-G., Choi, J.-W., Lee, W. H. (1998). Optimal fabrication condition of bacteri-
orhodopsin films by electrophoretic sedimentation technique. Supramolec. Sci. 5: 687-690.
66.
Kononenko, A. A., Lukashev, E. P., Chamorovsky, S. K., Maximychev, A. V., Timashev, S. F.,
Chekulaeva, L. N., Rubin, A. B., Paschenko, V. Z. (1986). Orientated purple-membrane films
as a probe for studies of the mechanism of bacteriorhodopsin functioning. I. The vectorial
character of the external electric-field effect on the dark state and the photocycle of bacteri-
orhodopsin. Biochim. Biophys. Acta . 892: 162-169.
67.
Alexiev, U., Scherrer, P., Marti, T., Khorana, H. G., Heyn, M. P. (1995). Time-resolved surface
charge change on the cytoplasmic side of bacteriorhodopsin. FEBS Lett . 373: 81-84.
68.
Schenkl, S., Mourik, F. V., Zwan, G. V. D., Haacke, S., Chergui, M. (2005). Probing the ultrafast
charge translocation of photoexcited retinal in bacteriorhodopsin. Science 309(5): 917-920.
69.
Grimnes, S., Martinsen, Ø. G. (2000). Bioimpedance & Bioelectricity Basics. London: Academic
Press Inc. (London) Ltd.
70.
Donati, S. (2000). Photodetectors: Devices, Circuits, and Applications . Upper Saddle River, NJ:
Prentice Hall PRT.
71.
Fossum, E. R. (1997). CMOS image sensors: Electronic camera-on-a chip. IEEE Trans. Electron
Devices 44: 1689-1698.
72.
Nakamura, J. (2005). Image Sensors and Signal Processing for Digital Still Cameras. Boca Raton,
FL: Taylor & Francis.
73.
Yadid-Pecht, O., Fossum, E. R. (1997). Readout schemes to increase dynamic range of image
sensors. NASA Tech. Briefs . 21: 32-33.
74.
Theuwissen, A. J. P. (1995). Solid-State Imaging with Charged-Coupled Devices . Dordrecht,
Boston, MA: Kluwer Academic Publishers.
75.
Kurino, H., Nakagawa, M., Lee, K. W., Nakamura, T., Yamada, Y., Park, K. T., Koyanagi, M.
(2000). Smart vision chip fabricated using three dimensional integration technology. Neural
Inform. Process. Syst. 13: 720-726.
76.
Johnson, M. (2003). Photodetection and Measurement: Maximizing Performance in Optical Systems.
New York; London: McGraw-Hill.
77.
Abshire, P. A., Andreou, A. G. (2001). A communication channel model for information trans-
mission in the blowfly photoreceptor. BioSystems 62: 113-133.
78.
Lacoste, D. Lau, A. W. C. (2005). Dynamics of active membranes with internal noise. Europhys.
Lett . 70(3): 418-424.
79.
Niven, J. E., Vahasoyrinki, M., Juusola, M., French, A. S. (2004). Interactions between light-
induced currents, voltage-gated currents, and input signal properties in drosophila photore-
ceptors. J. Neurophysiol . 91: 2696-2706.
80.
Lamb, T. D. (1987). Sources of noise in photoreceptor transduction. J. Opt. Soc. Am. A . 4(12):
2295-2300.
81.
Holcman, D., Korenbrot, J. I. (2005). The limit of photoreceptor sensitivity: Molecular mecha-
nisms of dark noise in retinal cones. J. Gen. Physiol . 125: 641-660.
82.
Becker, B. (1994). Comparison of noise performance between a FET transimpedance amplifier
and a switched integrator. Burr-Brown Appl. Bull . AB-57A: 1-7.
83.
Xu, J., Stickrath, A. B., Bhattacharya, P., Nees, J., Váró, G., Hillebrecht, J. R., Ren, L., Birge, R.
R. (2003). Direct measurement of the photoelectric response time of bacteriorhodopsin via
electro-optic sampling. Biophys. J . 85: 1128-1134.
84.
Koch, C., Li, H., Eds. (1995). Vision Chips: Implementing Vision Algorithms with Analog VLSI
Circuits. Piscataway, NJ: IEEE Computer Press.
Search WWH ::




Custom Search