Biomedical Engineering Reference
In-Depth Information
References
1.
D. Goldhaber-Gordon, M.S. Montemerlo, J.C. Love, G.J. Opiteck, J.C. Ellenbogen (1997).
Technologies and designs for electronic nanocomputers. MITRE Corporation.
http://www.mitre.org/tech/nanotech/IEEE_article.html (accessed March 10, 2006).
2.
J. Hecht (1994). “Rare” bug dominates the oceans. Science , 284:21.
3.
R. Companó, ed. (2001). Technology Roadmap for Nanoelectronics . European Communities,
Luxembourg, 2nd ed.
4.
L.A. Drachev, A.D. Kaulen, S.A. Ostroumov, V.P. Skulachev (1974). Electrogenesis by bacteri-
orhodopsin incorporated in a planar phospholipid membrane. FEBS Lett ., 39(1):43-45.
5.
A. Dér, P. Hargittai, J. Simon (1985). Time-resolved photoelectric and absorption signals
from oriented purple membranes immobilized in gel. J. Biochem. Biophys. Methods ,
10:295-300.
6.
K. Bryl, G. Váró, R. Drabent (1991). The photocycle of bacteriorhodopsin immobilized in
poly(vinylalcohol) film. FEBS Lett ., 285(1):66-70.
7.
N. Hampp (2000). Bacteriorhodopsin as a photochromic retinal protein for optical memories.
Chem. Rev ., 100:1755-1776.
8.
R.R. Birge (1992). Protein-based optical computing and memories. Computer , 25(11):56-67.
9.
T. Renner, N. Hampp (1993). Bacteriorhodopsin-films for dynamic time average interferome-
try. Optics Commun ., 96:142-149.
10.
Z. Chen, R.R. Birge (1993). Protein-based artificial retinas. TIBTECH , 11:292-300.
11.
M. Frydrych, P. Silfsten, S. Parkkinen, J. Parkkinen, T. Jaaskelainen (2000). Color sensitive
retina based on bacteriorhodopsin. Biosystems , 54(3):131-140.
12.
T. Miyasaka, K. Koyama, I. Itoh (1992). Quantum conversion and image detection by a bacte-
riorhodopsin-based artificial photoreceptor. Science , 255:342-344.
13.
P. Silfsten, S. Parkkinen, J. Luostarinen, A. Khodonov, T. Jaaskelainen, J. Parkkinen (1996).
Color sensitive biosensors for imaging. In the Proceedings of the 13th International
Conference on Pattern Recognition, ICPR'96, Vol. 3, pp. 331-335.
14.
H. Takei, A. Lewis, Z. Chen, I. Nebenzahl (1991). Implementing receptive fields with excitatory
and inhibitory optoelectrical responses of bacteriorhodopsin films. Appl. Optics , 30:500-509.
15.
H.-G. Choi, W.-C. Jung, J. Min, W.H. Lee, J.-W. Choi (2001). Color image detection by biomol-
ecular photoreceptor using bacteriorhodopsin-based complex LB films. Biosens. Bioelectron .,
16:925-935.
16.
J. Min, H.-G. Choi, B.-K. Oh, W.H. Lee, S.-H. Paek, J.-W. Choi (2001). Visual information pro-
cessing using bacteriorhodopsin-based complex LB films. Biosens. Bioelectron ., 16:917-923.
17.
J. Yang, G. Wang (1998). Image edge detecting by using the bacteriorhodopsin-based artificial
ganglion cell receptive field. Thin Solid Films , 324:281-284.
18.
B. Jähne (1999). Introduction. In B. Jähne, H. Haussecker, P. Geissler, ed., Handbook of Computer
Vision and Applications, Volume 1. Sensors and Imaging . Academic Press, San Diego, CA.
19.
M. Frydrych (1999). Color vision system based on bacteriorhodopsin. Ph.D. dissertation,
Lappeenranta University of Technology, Finland.
20.
B.A. Wandell (1995). Foundations of Vision . Sinauer Associates, Sunderland, Massachusetts.
21.
G. Wyszecki, W.S. Stiles (1982). Color Science . Wiley, London, 2nd ed.
22.
P.K. Kaiser, R.M. Boynton (1996). Human Color Vision . Washington, DC: Optical Society of
America, 2nd ed.
23.
J. Hallikainen (1991). Acousto-optic color signal processing. Ph.D. dissertation, University of
Kuopio, Finland.
24.
R. Robertson (1977). The CIE 1976 color-difference formulae. Color. Res. Appl ., 2(1):7-11.
25.
D.L. MacAdam (1942). Visual sensitivities to color differences in daylight. J. Opt. Soc. Am .,
32(5):247-273.
26.
A. Moini (1997). Vision chips or seeing silicon. Technical report, Centre for High Performance
Integrated Technologies and Systems, The University of Adelaide.
27.
L. Lensu, J. Parkkinen, S. Parkkinen, M. Frydrych, T. Jaaskelainen (2003). Photoelectrical prop-
erties of protein-based optoelectronic sensor. Opt. Mater ., 21:783-788.
Search WWH ::




Custom Search