Biomedical Engineering Reference
In-Depth Information
107.
Takao, K.-i., T. Kikukawa, T. Araiso, and N. Kamo, Azide accelerates the decay of M-interme-
diate of pharaonis phoborhodopsin. Biophys. Chem. , 1998. 73 (1-2): 145-153.
108.
Lo, K.M., S.S. Jones, N.R. Hackett, and H.G. Khorana, Specific amino acid substitutions in bac-
terioopsin: Replacement of a restriction fragment in the structural gene by synthetic DNA
fragments containing altered codons. Proc. Natl. Acad. Sci. U.S.A. , 1984. 81 : 2285-2289.
109.
Hong, F.T., Molecular sensors based on the photoelectric effect of bacteriorhodopsin: origin of
differential responsivity. Mater. Sci. Eng. , 1997. C4 : 267-385.
110.
Ahmad, A., N.K. Nanda, and K. Garg, Are primitive polynomials always best in signature
analysis? IEEE Des. Test Comput. , 1990. 7 : 36-38.
111.
Braun, S., Mechanical Signature Analysis . 1986, Academic Press: London.
112.
David, R., Signature analysis for multiple-output circuits. IEEE Trans. Comput. , 1986. 35 :
830-837.
113.
Dekker, A.G., T.J. Malthus, M.M. Wijnen, and E. Seyhan, The effect of spectral band width and
positioning on the spectral signature analysis of inland waters. Remote Sens. Environ. , 1992. 41 :
211-226.
114.
Sanders, C.A., M. Rodriguez, Jr., and E. Greenbaum, Stand-off tissue-based biosensors for the
detection of chemical warfare agents using photosynthetic fluorescence induction. Biosens.
Bioelectron. , 2001. 16 (7-8): 439-446.
115.
Yordy, B., J. Girard, J.F. Koscielecki, J.R. Hillebrecht, W. Tetley, D.L. Marcy, and J.A. Stuart,
Utilization of bacteriorhodopsin mutants in chemical sensor architectures. Manuscript in
preparation, 2006.
116.
Beja, O., L. Aravind, E.V. Koonin, M.T. Suzuki, A. Hadd, L.P. Nguyen, S.B. Jovanovich, C.M.
Gates, R.A. Feldman, J.L. Spudich, E.N. Spudich, and E.F. DeLong, Bacterial rhodopsin: evi-
dence for a new type of phototrophy in the sea. Science , 2000. 289 (5486): 1902-1906.
117.
Beja, O., E.N. Spudich, J.L. Spudich, M. Leclerc, and E.F. DeLong, Proteorhodopsin phototro-
phy in the ocean. Nature , 2001. 411 (6839): 786-789.
118.
Lee, I., J.W. Lee, A. Stubna, and E. Greenbaum, Measurement of electrostatic potentials above
oriented single photosynthetic reaction centers. J. Phys. Chem. B , 2000. 104 (11): 2439-2443.
119.
Nakamura, C., M. Hasegawa, N. Nakamura, and J. Miyake, Rapid and specific detection of
herbicides using a self-assembled photosynthetic reaction center from purple bacterium on an
SPR chip. Biosens. Bioelectron. , 2003. 18 (5-6): 599-603.
120.
Koblizek, M., J. Maly, J. Masojidek, J. Komenda, T. Kucera, M.T. Giardi, A.K. Mattoo, and
R. Pilloton, A biosensor for the detection of triazine and phenylurea herbicides designed using
Photosystem II coupled to a screen-printed electrode. Biotechnol. Bioeng. , 2002. 78 (1): 110-116.
121.
Montgomery, B.L. and J.C. Lagarias, Phytochrome ancestry: sensors of bilins and light. Trends
Plant Sci ., 2002. 7 (8): 357-366.
122.
Hellingwerf, K.J., Key issues in the photochemistry and signalling-state formation of photo-
sensor proteins. J. Photochem. Photobiol. , 2000. 54 (2-3): 94-102.
Search WWH ::




Custom Search