Biomedical Engineering Reference
In-Depth Information
and work to that effect is ongoing at the University of Connecticut. Designs for a miniatur-
ized sensor platform implementing the mutant matrix with both photochromokinetic and
photoelectric capabilities are also being developed.
Acknowledgments
The authors gratefully acknowledge the following funding organizations for their gener-
ous support of the research efforts described herein: The New York State Center for
Excellence in Infotonics UC-004-0007, Nation Science Foundation grants #NSF-0432151,
including REU support (JAS, RRB) and # NSF-0412387 (PB, RRB), and the Nation Institutes
of Health, NIH-GM34548 (RRB).
References
1.
Rodriguez, M., Jr., C.A. Sanders, and E. Greenbaum, Biosensors for rapid monitoring of pri-
mary-source drinking water using naturally occurring photosynthesis. Biosens. Bioelectron. ,
2002. 17 (10): 843-849.
2.
van der Schalie, W.H., T.R. Shedd, M.W. Widder, and L.M. Brennan, Response characteristics
of an aquatic biomonitor used for rapid toxicity detection. J. Appl. Toxicol. , 2004. 24 (5):
387-394.
3.
Fleming-Michael, K., Aquatic sentries keep watch on water quality. 2003. US Army
Environmental Center: Environmental Update.
4.
Wei, Y., J. Xu, Q. Feng, M. Lin, H. Dong, W.J. Zhang, and C. Wang, A novel method for enzyme
immobilization: direct encapsulation of acid phosphatase in nanoporous silica host materials.
J. Nanosci. Nanotechnol. , 2001. 1 (1): 83-93.
5.
Wei, Y., H. Dong, J. Xu, and Q. Feng, Simultaneous immobilization of horseradish peroxidase
and glucose oxidase in mesoporous sol-gel host materials. ChemPhysChem , 2002. 3 (9): 802-808.
6.
Birge, R.R., P.A. Fleitz, R.B. Gross, J.C. Izgi, A.F. Lawrence, J.A. Stuart, and J.R. Tallent, Spatial
light modulators and optical associative memories based on bacteriorhodopsin. Proc. IEEE
EMBS , 1990. 12 : 1788-1789.
7.
Birge, R.R., K.C. Izgi, J.A. Stuart, and J.R. Tallent, Wavelength dependence of the photorefrac-
tive and photodiffractive properties of holographic thin films based on bacteriorhodopsin.
Proc. Natl. Res. Soc. , 1991. 218 : 131-140.
8.
Hampp, N., A. Popp, C. Bräuchle, and D. Oesterhelt, Diffraction efficiency of bacteri-
orhodopsin films for holography containing bacteriorhodopsin wildtype BR WT
and its vari-
ants BR D85E and BR D96N . J. Phys. Chem. , 1992. 96 (11): 4679-4685.
9.
Birge, B., P. Fleitz, R. Gross, J. Izgi, A. Lawrence, J. Stuart, and J. Tallent. Spatial light modula-
tors and optical associative memories based on bacteriorhodopsin . 1990, Materials Research Society:
Boston, MA.
10.
Vsevolodov, N.N., A.B. Druzhko, and T.V. Djukova, Actual possibilities of bacteriorhodopsin
application in optoelectronics, in Molecular Electronics: Biosensors and Biocomputers , F.T. Hong,
Editor. 1989, Plenum Press: New York. pp. 381-384.
11.
Vsevolodov, N.N. and V.A. Poltoratskii, Holograms in biochrome, a biological photochromic
material. Sov. Phys. Tech. Phys. , 1985. 30 : 1235.
12.
Hampp, N., C. Bräuchle, and D. Oesterhelt, Bacteriorhodopsin wildtype and variant aspar-
tate-96 Æ asparagine as reversible holographic media. Biophys. J. , 1990. 58 : 83-93.
13.
Hampp, N., C. Bräuchle, and D. Oesterhelt, Mutated bacteriorhodopsins: competitive materi-
als for optical information processing? MRS Bull. , 1992. XVII (11): 56-60.
 
Search WWH ::




Custom Search