Biomedical Engineering Reference
In-Depth Information
target-DNA guanine base as well as products of enzyme labels, thus providing a huge ben-
efit for the development of PCR-free electrochemical DNA sensors.
The future perspective of CNT-based electrochemical biosensors is bright. To further
envisage a variety of applications of CNT-based biosensors, better methods to control the
chemical and physical properties of CNT and theoretically understand their phenomena
are desired. Based on the recent advances in this field, real applications of CNT-based elec-
trochemical biosensor can be expected in the near future.
Acknowledgment
The financial support for this work was provided by KOSEF through the Center for
Bioacitve Molecular Hybrids at Yonsei University.
References
[1]
Iijima, S. (1991) Helical microtubules of graphite carbon. Nature 354: 56-58.
[2]
Ajayan, P. M. (1999) Nanotubes from carbon. Chem. Rev . 99: 1787-1799.
[3]
Zhao, Q., Gan, Z., Zhuang, Q. (2002) Electrochemical sensors based on carbon nanotubes.
Electroanalysis 14: 1609-1613.
[4]
Klein, D. J., Seitz, W. A., Schmaltz, T. G., (1993) Symmetry of infinite tubular polymers: appli-
cation to buckytubes. J. Phys. Chem. 97: 1231-1236.
[5]
Katz, E., Willner, I. (2004) Biomolecule-functionalized carbon nanotubes: applications in
nanobioelectronics. Chem. Phys. Chem. 5: 1084-1104.
[6]
Wang. J. (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis
17: 7-14.
[7]
Musameh, M., Wang, J., Arben, M., Lin, Y. (2002) Low-potential stable NADH detection at car-
bon-nanotube-modified glassy carbon electrodes. Electrochem. Commun . 4: 743-746.
[8]
Wang, J., Musameh, M., Lin, Y. (2003) Solubilization of carbon nanotubes by Nafion toward
the preparation of amperometric biosensors. J. Am. Chem. Soc. 125: 2408-2409.
[9]
Britto, P. J., Santhanam, K. S. V., Ajayan, P. M. (1996) Caron nanotube electrode for oxidation
of dopamine. Bioelectrochem. Bioenergy 41: 121-125.
[10]
Davis, J. J., Coles, R. J., Hill, H. A. O. (1997) Protein electrochemistry at carbon nanotube
electrodes. J. Electroanal. Chem . 440: 279-282.
[11]
Luo, H., Shi, Z., Li, N., Gu, Z., Zhuang, Q. (2001) Investigation of the electrochemical and elec-
trocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal.
Chem . 73: 915-920.
[12]
Choi, H. N. (2005). Electrochemical Sensors and Biosenors Based on Sol-Gel Metal Oxides-Nafion
and Carbon Nanotube Composite Films. Ph.D. dissertation, Yonsei University, Seoul, Korea.
[13]
Choi, H. N., Cho, S.-H., Lee, W.-Y. (2003) Electrogenerated chemiluminescence from tris(2,2'-
bipyridyl)ruthenium(II) immobilized in titania-perfluorosulfonated ionomer composite
films. Anal. Chem . 75: 4250-4256.
[14]
Choi, H. N., Kim, M. A., Lee, W.-Y. (2005) Amperometric glucose biosensor based on sol-gel-
derived metal oxide/Nafion composite films. Anal. Chim. Acta 537: 179-187.
[15]
Wang, J., Musameh, M. (2003) Caron nanotube/Teflon composite electrochemical sensors and
biosensors. Anal. Chem . 75: 2075-2079.
[16]
Gong, K., Zhang, M., Yan, Y., Su, L., Mao, L., Xiong, S., Chen, Y. (2004) Sol-gel-derived
ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and poten-
tial electrochemical applications. Anal. Chem . 76: 6500-6506.
 
Search WWH ::




Custom Search