Biomedical Engineering Reference
In-Depth Information
References
1.
Daniel, M. C., Astruc, D. (2004). Gold Nanoparticles: Assembly, Supramolecular Chemistry,
Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and
Nanotechnology. Chem. Rev. , 104, 293-346.
2.
Katz, E., Willner, I. (2004). Biomolecule-Functionalized Carbon Nanotubes: Application in
Nanobioelectronics. ChemPhysChem., 5(8), 1084-1104.
3.
Lieber, C. M., Liu, J., Sheehan, P. E. (1996). Understanding and Manipulating Inorganic
Materials Using Scanning Probe Microscopes. Angew. Chem. Int. Ed. Engl. , 35, 686-704.
4.
Iijima, S. (1991). Helical Microtubules of Graphitic Carbon. Nature , 354, 56-57.
5.
Beguin, F., Ehrburger, P. (Eds). (2002). Special Issue on Carbon Nanotubes. Carbon, 40,
1619-1842.
6.
Haddon, R. C. (Ed). (2002). Special Issue on Carbon Nanotubes. Acc. Chem. Res. , 35, 997-1113.
7.
Dresselhaus, M. S., Dai, H. (Eds). (2004). Special Issue on Carbon Nanotubes. MRS Bull. 29,
237-281.
8.
Harris, P. J. F. (1999). Carbon nanotubes and related structures: new materials for the 21 st
century.
Cambridge University Press, Cambridge, UK.
9.
Dresselhaus, M. S., Dresselhaus, G., Avouris, P. (2001). Carbon nanotubes: synthesis, structure,
properties, and applications (Topics in Applied Physics, Vol. 80). Springer-Verlag, New York.
10.
Saito, R., Dresselhaus, G., Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes .
Imperial College Press, London.
11.
Meyyappan, M. (2005). Carbon nanotubes: science and applications . CRC press, Boca Raton, FL.
12.
Baughman, R. H., Zakhidov, A. A., de Heer, W. A. (2002). Carbon Nanotubes—The Route
Toward Applications. Science, 297, 787-792.
13.
Balasubramanian, K., Burghard, M. (2005). Chemically Functionalized Carbon Nanotubes.
Small , 1, 180-192.
14.
Iijima, S., Ichibashi, T. (1993). Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature , 363,
603-605.
15.
Bethune, D. S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.
(1993). Cobalt-Catalysed Growth of Carbon Nanotubes With Single-Atomic-Layer Walls.
Nature , 363, 605-607.
16.
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., Dai, H. (1998). Synthesis of Individual Single-
Walled Carbon Nanotubes on Patterned Silicon Wafers. Nature , 395, 878-881.
17.
Cassell, A., Raymarks, J., Kong, J., Dai, H. (1999). Large Scale CVD Synthesis of Single-Walled
Carbon Nanotubes. J. Phys. Chem. , 103, 6484-6492.
18.
Moisala, A., Nasibulin, A. G., Kauppinen, E. I. (2003). The Role of Metal Nanoparticles in the
Catalytic Production of Single-Walled Carbon Nnanotubes—A Review . J. Phys. Condens.
Matter. , 15, S3011-S3035.
19.
Franklin, N., Dai, H. (2000). An Enhanced CVD Approach to Extensive Nanotube Networks
With Directionality. Adv. Mater. , 12, 890-894.
20.
Su, M., Zhang, B., Liu, J. (2000). A Scalable CVD Method for the Synthesis of Single-Walled
Carbon Nanotubes With High Catalyst Productivity. Chem. Phys. Lett. , 322, 321-326.
21.
Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A.,
Smalley, R. E. (1999). Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes From
Carbon Monoxide. Chem. Phys. Lett. , 313, 91-97.
22.
Flahaut, E., Govindaraj, A., Peigney, A., Laurent, C., Rao, C. N. (1999). Synthesis of Single-
Walled Carbon Nanotubes Using Binary Fe, Co, Ni Alloy Nanoparticles Prepared In Situ by
the Reduction of Oxide Solid Solutions. Chem. Phys. Lett. , 300, 236-242.
23.
Colomer, J. F., Stephan, C., Lefrant, S., Tendeloo, G. V., Willems, I., Kanya, Z., Fonseca, A.,
Laurent, C., Nagy, J. B. (2000). Large-Scale Synthesis of Single-Wall Carbon Nanotubes by
Catalytic Chemical Vapor Deposition CCVD Method. Chem. Phys. Lett . , 317, 83-89.
24.
Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N. (1998).
Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science , 282,
1105-1107.
Search WWH ::




Custom Search