Biomedical Engineering Reference
In-Depth Information
However, the examples described above and ongoing research have provided strong
support for the assertion that PSi-based sensors can provide significant value in general
biosensing applications, as well as potentially possessing some truly unique attributes. For
example, little has been done so far to exploit the “bulk filtration” properties the PSi
matrix can provide, as well as potentially carrying out size-selective detection of analytes.
Combined with its ease of preparation and the promise of simple integration with com-
modity microelectronics, we can expect to see PSi-based sensors move beyond the labora-
tory into the “real world” in the near future.
References
1.
Dolley, C. S. (1885). The Technology of Bacteria Investigation . Boston, MA: S. E. Cassino and
Company.
2.
Segal, E.; Friedman, N.; Kaminski, N.; Regev, A.; Koller, D. (2005). From signatures to models:
understanding cancer using microarrays. Nat. Genet. 37: S38-S45.
3.
Liu, H. L.; Hsu, J. P. (2005). Recent developments in structural proteomics for protein struc-
ture determination. Proteomics 5: 2056-2058.
4.
Goodacre, R.; Vaidyanathan, S.; Dunn, W. B.; Harrigan, G. G.; Kell, D. B. (2004). Metabolomics
by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22:
245-252.
5.
Canham, L. T., Ed., (1997). Properties of Porous Silicon . London, UK: INSPEC: The Institution of
Electrical Engineers.
6.
Daly, S. J.; Keating, G. J.; Dillon, P. P.; Manning, B. M.; O'Kennedy, R.; Lee, H. A.; Morgan,
M. R. A. (2000). Development of surface plasmon resonance-based immunoassay for afla-
toxin B1. J. Agric. Food Chem. 48: 5097-5104.
7.
Lu, J.; Strohsahl. C. M.; Miller, B. L.; Rothberg, L. J. (2004). Reflective Interferometric Detection
of Label-Free Oligonucleotides. Anal. Chem. 76:4416-4420.
8.
Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical
dissolution of wafers. Appl. Phys. Lett. 57:1046-1048.
9.
Doan, V. V.; Sailor, M. J. (1992). Luminescent color image generation on porous silicon. Science
256: 1791-1792.
10.
Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. (1997). A porous
silicon-based optical interferometric biosensor. Science 278: 840-843.
11.
Dancil, K.-P. S.; Greiner, D. P.; Sailor, M. J. (1999). A Porous Silicon Optical Biosensor:
Detection of Reversible Binding of IgG to a Protein A-Modified Surface. J. Am. Chem. Soc. 121:
7925-7930.
12.
Berger, M. G.; Dieker, C.; Thönissen, M.; Vescan , L.; Lüth, H.; Münder, H.; Theiß, W.; Wernke,
M.; Grosse, P. (1994). Porosity Superlattices: a new class of Si heterostructures. J. Phys. D: Appl.
Phys. 27:1333-1336.
13.
Chan, S.; Fauchet, P. M. (1999). Tunable, narrow, and directional luminescence from porous
silicon light emitting devices. Appl. Phys. Lett. 75: 274-276.
14.
Lugo, J. E.; Lopez, H. A.; Chan, S.; Fauchet, P. M. (2002). Porous silicon multilayer structures:
A photonic band gap analysis. J. Appl. Phys. 91: 4966-4972.
15.
Lopez, C. (2003). Materials aspects of photonic crystals. Adv. Mater. 15: 1679-1704.
16.
Chan, S.; Fauchet, P. M.; Li, Y.; Rothberg, L. J.; Miller, B. L. (2000). Porous Silicon Microcavities
for Biosensing Applications. Phys. Stat. Sol. A 182: 541-546.
17.
Chan, S.; Li, Y.; Rothberg, L. J.; Miller, B. L.; Fauchet, P. M. (2001). Nanoscale Silicon
Microcavities for Biosensing. Mat. Sci. Eng. C 15: 277-282.
18.
Hershey, A. D. (1971). The Bacteriophage Lambda . New York: Cold Spring Harbor Laboratory.
19.
Igloi, G. L. (1998). Variability in the stability of DNA-peptide nucleic acid (PNA) single-base
mismatched duplexes: Real-time hybridization during affinity electrophoresis in PNA-con-
taining gels. Proc. Natl. Acad. Sci. U S A 95: 8562-8567.
Search WWH ::




Custom Search