Biomedical Engineering Reference
In-Depth Information
44. Osman EY, Yen PF, Lorson CL (2012)
Bifunctional RNAs targeting the intronic splic-
ing silencer N1 increase SMN levels and reduce
disease severity in an animal model of spinal
muscular atrophy. Mol Ther 20(1):119-126
45. Hua Y, Sahashi K, Hung G et al (2010)
Antisense correction of SMN2 splicing in the
CNS rescues necrosis in a type III SMA mouse
model. Genes Dev 24(15):1634-1644
46. Hua Y, Sahashi K, Rigo F et al (2011) Peripheral
SMN restoration is essential for long-term res-
cue of a severe spinal muscular atrophy mouse
model. Nature 478(7367):123-126
47. Passini MA, Bu J, Richards AM et al (2011)
Antisense oligonucleotides delivered to the mouse
CNS ameliorate symptoms of severe spinal mus-
cular atrophy. Sci Transl Med 3(72):72ra18
48. Porensky PN, Mitrpant C, McGovern VL et al
(2012) A single administration of morpholino
antisense oligomer rescues spinal muscular
atrophy in mouse. Hum Mol Genet 21(7):
1625-1638
49. Zhou H, Janghra N, Mitrpant C et al (2013)
A novel morpholino oligomer targeting ISS-
N1 improves rescue of severe spinal muscular
atrophy transgenic mice. Hum Gene Ther
24(3):331-342
50. Lorson CL, Rindt H, Shababi M (2010) Spinal
muscular atrophy: mechanisms and therapeu-
tic strategies. Hum Mol Genet 19(R1):
R111-R118
51. Cherry JJ, Androphy EJ (2012) Therapeutic
strategies for the treatment of spinal muscular
atrophy. Future Med Chem 4(13):1733-1750
52. Lorson MA, Lorson CL (2012) SMN-
inducing compounds for the treatment of spi-
nal muscular atrophy. Future Med Chem
4(16):2067-2084
53. Shababi M, Mattis VB, Lorson CL (2010)
Therapeutics that directly increase SMN
expression to treat spinal muscular atrophy.
Drug News Perspect 23(8):475-482
54. Lewelt A, Newcomb TM, Swoboda KJ (2012)
New therapeutic approaches to spinal muscu-
lar atrophy. Curr Neurol Neurosci Rep 12(1):
42-53
55. Azzouz M, Le T, Ralph GS et al (2004)
Lentivector-mediated SMN replacement in a
mouse model of spinal muscular atrophy.
J Clin Invest 114(12):1726-1731
56. McCarty DM (2008) Self-complementary
AAV vectors: advances and applications. Mol
Ther 16(10):1648-1656
57. McCarty DM, Fu H, Monahan PE et al (2003)
Adeno-associated virus terminal repeat (TR)
mutant generates self-complementary vectors
to overcome the rate-limiting step to transduc-
tion in vivo. Gene Ther 10(26):2112-2118
58. Gray JT, Zolotukhin S (2011) Design and
construction of functional AAV vectors.
Methods Mol Biol 807:25-46
59. Passini MA, Bu J, Roskelley EM et al (2010)
CNS-targeted gene therapy improves survival
and motor function in a mouse model of spinal
muscular atrophy. J Clin Invest 120(4):
1253-1264
60. Le TT, McGovern VL, Alwine IE et al (2011)
Temporal requirement for high SMN
expression in SMA mice. Hum Mol Genet
20(18):3578-3591
61. Lutz CM, Kariya S, Patruni S et al (2011)
Postsymptomatic restoration of SMN rescues
the disease phenotype in a mouse model of
severe spinal muscular atrophy. J Clin Invest
121(8):3029-3041
62. Foust KD, Nurre E, Montgomery CL et al
(2009) Intravascular AAV9 preferentially tar-
gets neonatal neurons and adult astrocytes.
Nat Biotechnol 27(1):59-65
63. Duque S, Joussemet B, Riviere C et al (2009)
Intravenous administration of self-
complementary AAV9 enables transgene deliv-
ery to adult motor neurons. Mol Ther
17(7):1187-1196
64. Bevan AK, Hutchinson KR, Foust KD et al
(2010) Early heart failure in the SMN{Delta}7
model of spinal muscular atrophy and correc-
tion by postnatal scAAV9-SMN delivery. Hum
Mol Genet 19(20):3895-3905
65. Heier CR, Satta R, Lutz C et al (2010)
Arrhythmia and cardiac defects are a feature of
spinal muscular atrophy model mice. Hum
Mol Genet 19(20):3906-3918
66. Shababi M, Habibi J, Yang HT et al (2010)
Cardiac defects contribute to the pathology of
Spinal Muscular Atrophy models. Hum Mol
Genet 19(20):4059-4071
67. Passini MA, Cheng SH (2011) Prospects for
the gene therapy of spinal muscular atrophy.
Trends Mol Med 17(5):259-265
68. Bish LT, Sleeper MM, Brainard B et al (2008)
Percutaneous transendocardial delivery of self-
complementary adeno-associated virus 6
achieves global cardiac gene transfer in canines.
Mol Ther 16(12):1953-1959
69. Pacak CA, Mah CS, Thattaliyath BD et al
(2006) Recombinant adeno-associated virus
serotype 9 leads to preferential cardiac trans-
duction in vivo. Circ Res 99(4):e3-e9
70. Wang DB, Dayton RD, Henning PP et al
(2010) Expansive gene transfer in the rat CNS
rapidly produces amyotrophic lateral sclerosis
relevant sequelae when TDP-43 is overex-
pressed. Mol Ther 18(12):2064-2074
71. Gray SJ, Matagne V, Bachaboina L et al (2011)
Preclinical differences of intravascular AAV9
Search WWH ::




Custom Search