Hardware Reference
In-Depth Information
a
b
c
d
e
Fig. 3.1 Illustration of synchronous compositions M A M B D M A B and M A M B D M A B 0
of Example 3.11 -a) and 3.11 -b). ( a ) FSM M A ;( b ) FSM M B ;( c )FSMM B ;( d )FSMM A M B
D
M A B ;( e ) FSM M A M B
D M A B 0
.0; .s1;sb/; .s2;sb/; 0/ g
defines a partial FSM (no transition from state
.s2; sb/).
Figure 3.1 shows FSMs M A , M B
and M A M B .
Theorem 3.12. Let M A be a complete FSM over input alphabet I 1 V and output
alphabet O 1 U and let M B be a complete Moore FSM over input alphabet I 2 U
and output alphabet O 2 V . Then the composition M A M B is a complete FSM.
Proof. Consider a string ˛ 2 L.M A / " I 2 O 2 \ L.M B / " I 1 O 1 . Suppose that from the
initial state, M A reaches state s under the string ˛ # I 1 U V O 1 and similarly that M B
reaches state t under the string ˛ # I 2 U V O 2 . Let the external input .i 1 ;i 2 / 2 I 1 I 2
be applied next. For any u 2 U there is a transition i 2 u ;t;t 0 ;o 2 v / in M B , because
M B is a complete FSM; similarly, for any v 2 V there is a transition .i 1 v ;s;s 0 ;o 1 u 0 /
in M A , because M A is a complete FSM. Moreover, given the input i 2 u 0 ,thereis
a transition .i 2 u 0 ;t;t 00 ;o 2 v / with the same output o 2 v of transition .i 2 u ;t;t 0 ;o 2 v /,
because M B is a Moore FSM. Therefore u 0 and v are matching internal signals, i.e.,
the string ˛ can be extended by .i 1 ;i 2 ; u 0 ; v ;o 1 ;o 2 /.
t
Search WWH ::




Custom Search