Information Technology Reference
In-Depth Information
[74] Hughes, A.L., Friedman, R.: Gene duplication and the properties of biological net-
works. J. Mol. Evol. 61 (2005) 758{764.
[75] Koonin, E.V., Wolf, Y.I., Karev, G.P.: The structure of the protein universe and
genome evolution. Nature 420 (2002) 218{223.
[76] Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. Nature 411 (2001) 41{42.
[77] Chen, Y., Xu, D.: Understanding protein dispensability through machine-learning
analysis of high-throughput data. Bioinformatics 21 (2005) 575{581.
[78] Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in
three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22 (2005) 803{806.
[79] Pereira-Leal, J.B., Audit, B., Peregrin-Alvarez, J.M., Ouzounis, C.A.: An exponential
core in the heart of the yeast protein-interaction network. Mol. Biol. Evol. 22 (2005)
421{425.
[80] Fraser, H.B., Wall, D.P., Hirsh, A.E.: A simple dependence between protein evolution
rate and the number of protein{protein interactions. BMC Evol. Biol. 3 (2003) 11.
[81] Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C., Feldman, M.W.: Evolution-
ary rate in the protein-interaction network. Science 296 (2002) 750{752.
[82] Saeed, R., Deane, C.M.: Proteinprotein interactions, evolutionary rate, abundance,
and age. BMC Bioinformatics 7 (2006) 21.
[83] Makino, T., Gojobori, T.: The evolutionary rate of a protein is inuenced by features
of the interacting partners. Mol. Biol. Evol. 23 (2006) 784{789.
[84] Batada, N.N., Hurst, L.D., Tyers, M.: Evolutionary and physiological importance of
hub proteins. PLoS Comput. Biol. 2 (2006) e88.
[85] Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M.:
Abstract genomic analysis of regulatory network dynamics reveals large topological
changes. Nature 431 (2004) 308{312.
[86] Watts, D.J., Strogatz, S.H.: Collective dynamics of 'small-world' networks. Nature
393 (1988) 440{442.
[87] Ravasz, E., Barabasi, A.L.: Hierarchical organization in complex networks. Phys.
Rev. E. Stat. Nonlin. Soft Matter Phys. 67 (2003) 026112.
[88] Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical
organization of modularity in metabolic networks. Science 297 (2002) 1551{1555.
[89] Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a
small-world, not scale-free, network. Proc. Roy Soc. B Biol. Sci. 273 (2006) 503{511.
[90] Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89 (2002) 208701.
[91] Newman, M.E.: Mixing patterns in networks. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 67 (2003) 026126.
[92] Park, J., Barabasi, A.L.: Distribution of node characteristics in complex networks.
Proc. Natl. Acad. Sci. USA 104(46):17916-20 (2007) 17916{17920.
[93] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298 (2002) 824{827.
[94] Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional
regulation network of Escherichia coli. Nat. Genet. 31 (2002) 64{68.
Search WWH ::




Custom Search