Information Technology Reference
In-Depth Information
[58] Hansel, D. and Mato, G. (2001). Existence and stability of persistent states in large
neuronal networks, Phys. Rev. Lett. 86, pp. 4175{4178.
[59] Hansel, D. and Mato, G. (2003). Asynchronous states and the emergence of syn-
chrony in large networks of interacting excitatory and inhibitory neurons, Neural
Comp. 15, pp. 1 { 56.
[60] Hansel, D., Mato, G. and Meunier, C. (1995). Synchrony in excitatory neural net-
works, Neural Comp. 7, pp. 307{337.
[61] Hayon, G., Abeles, M. and Lehmann, D. (2003). A model for representing the dy-
namics of a system of synre chains, J. Comp. Neurosci. 18, pp. 41{53.
[62] Herrmann, M., Hertz, J. and Prugel-Bennett, A. (1995). Analysis of synre chains,
Network 6, pp. 403{414.
[63] Hertz, J. and Prugel-Bennett, A. (1996). Learning short synre chains by self-
organization, Network 7, pp. 357{363.
[64] Hindmarsh, J. and Rose, R. (1984). A model of neuronal bursting using three coupled
rst order dierential equations, Proc. R. Soc. Lond. Ser. B 221, pp. 87{102.
[65] Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Physiol. 117, pp. 500{
544.
[66] Hopeld, J. (1982). Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. 79, pp. 2554{2558.
[67] Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D. and Yuste,
R. (2004). Synre chains and cortical songs: Temporal modules of cortical activity,
Science 304, pp. 559{564.
[68] Itzhikevich, E. (2005). Polychronization: Computation with spikes, Neural Comp.
18, pp. 245{282.
[69] Itzhikevich, E., Gally, J. and Edelman, G. (2004). Spike-timing dynamics of neuronal
groups, Cereb. Cortex 14, pp. 933{944.
[70] Izhikevich, E. (2003). Simple model of spiking neurons, IEEE Trans. Neur. Netw.
14, pp. 1569{1572.
[71] Izhikevich, E. (2007). Dynamical Systems in Neuroscience: The Geometry of Ex-
citability and Bursting (MIT Press, Cambridge).
[72] Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication, Science 304, pp. 78{80.
[73] Jahnke, S., Memmesheimer, R.-M. and Timme, M. (2009). How chaotic is the bal-
anced state? Frontiers in Comput. Neurosci., under review.
[74] Jahnke, S., Memmesheimer, R.-M. and Timme, M. (2008). Stable irregular dynamics
in complex neural networks, Phys. Rev. Lett. 100, p. 048102.
[75] Jin, D. (2002). Fast convergence of spike sequences to periodic patterns in recurrent
networks, Phys. Rev. Lett. 89, p. 208102.
[76] Jolivet, R., Lewis, T. and Gerstner, W. (2004). Generalized integrate-and-re models
of neuronal activity approximate spike trains of a detailed model to a high degree
of accuracy, J. Neurophysiol. 92, pp. 959{976.
[77] Jolivet, R., Rauch, A., Lscher, H.-R. and Gerstner, W. (2006). Integrate-and-re
models with adaptation are good enough: Predicting spike times under random
current injection, in M. Taketani and M. Baudry (eds.), Advances in network elec-
trophysiology using multi-electrode arrays (Springer).
[78] Jung, p. (1995). Stochastic resonance and optimal design of threshold detectors,
Phys. Lett. A 207, pp. 93{104.
[79] Kandel, E., Schwartz, J. and Jessell, T. (1995). Principles of Neural Science (Pren-
tice Hall, London).
Search WWH ::




Custom Search