Information Technology Reference
In-Depth Information
DeLuna, A., Avendano, A., Riego, L. and Gonzalez, A. (2001) NADP-glutamate dehydrogenase
isoenzymes of Saccharomyces cerevisiae . Purification, kinetic properties, and physiological
roles, J. Biol. Chem. , 276, pp. 43775-43783.
Duarte, N. C., Palsson, B. O. and Fu, P. (2004). Integrated analysis of metabolic phenotypes in
Saccharomyces cerevisiae , BMC Genomics , 5, pp. 63.
Dunker et al. (2002). Another window into disordered protein function, Structure , 15, pp.1026-
1028.
Edwards, J. S. and Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic
genotype: Its definition, characteristics, and capabilities, Proc Natl Acad Sci USA , 97,
pp. 5528-5533.
Edwards, J. S., Ibarra, R. U. and Palsson, B. O. (2001). In silico prediction of Escherichia Coli
metabolic capabilities are consistent with experimental data, Nat. Biotechol ., 19, pp. 125-30.
Farkas, I., Hardy, T. A., Goebl, M. G. and Roach P. J. (1991). Two glycogen synthase isoforms in
Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled, J. Biol.
Chem. , 266, pp. 15602-15607.
Fell, D. A. (1992). Metabolic Control Analysis: a survey of its theoretical and experimental
development, Biochem. J. , 286, pp. 313-30.
Fell, D. A. (1997). Understanding the control of metabolism , Portland Press, London, UK.
Feller, A., Ramos, F., PiƩrard, A. and Dubois, E. (1999). In Saccharomyces cerevisiae , feedback
inhibition of homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene
expression by Lys14p, Eur. J. Biochem. , 261, pp. 163-170.
Fiehn, O. and Weckwerth, W. (2003). Deciphering metabolic networks, Eur. J. Biochem. , 270,
pp. 579-588.
Finkelstein, A. V. and Galzitskaya, O. V. (2004). Physics of protein folding, Phys. Life Rev. , 1,
pp. 23-56.
Fong, S. S., Marciniak, J. Y. and Palsson, B. O. (2003). Description and interpretation of adaptive
evolution of Escherichia coli K-12 MG1655 using a genome-scale in silico metabolic model,
J. Bacteriol. , 185, pp. 6400-6408.
Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models, Science ,
303, pp. 799-805.
Gardner, T. S. and Faith, J. J. (2005). Reverse-engineering transcriptional control networks, Phys.
Life Rev., 2, pp. 65-88.
Gardner, T. S., di Bernardo, D., Lorenz, D. and Collins, J. J. (2003). Inferring genetic networks and
identifying compound mode of action via expression profiling, Science , 301, pp. 102-5.
Giersch, C. (2000). Matematical modelling of metabolism, Curr. Opin. Plant. Biol. , 3, pp. 249-253.
Goh, K. I., Kahng, B. and Kim, D. (2001). Spectra and eigenvectors of scale-free networks, Phys.
Rev. E ., 64, 051903 1-5.
Gomperts, B. D., Mramer, I. M. and Tatham, P. E. R. (2002). Signal transduction , Academic Press,
New York, NY.
Gu, X. (2003). Evolution of duplicate genes versus genetic robustness against null mutations,
Trends Genet. , 19, pp. 354-356.
Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W. and Li, W. H. (2003). Role of duplicate
genes in genetic robustness against null mutations, Nature , 421, pp. 31-32.
Guimera, R. and Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic
networks, Nature , 433, pp. 895-900.
Harbison, C. T. et al (2004). Transcriptional regulatory code of a eukaryotic genome, Nature , 431,
pp. 99-104.
Search WWH ::




Custom Search