Environmental Engineering Reference
In-Depth Information
54. Becker, H., Herzberg, F., Schulte, A., and Kolossa-Gehring, M., The carcinogenic potential of nanoma-
terials, their release from products and options for regulating them, Int. J. Hyg. Environ. Health , 214(3),
231-238, 2011.
55. Aschberger, K., Johnston, H.J., Stone, V., Aitken, R.J., Hankin, S.M., Peters, S.A., Tran, C.L., and
Christensen, F.M., Review of carbon nanotubes toxicity and exposure—Appraisal of human health risk
assessment based on open literature, Crit. Rev. Toxicol ., 40, 759, 2010.
56. Golshahi, L., Finlay, W.H., Olfert, J.S., Thompson, R.B., and Noga, M.L., Deposition of inhaled ultraine
aerosols in replicas of nasal airways of infants, Aerosol Sci. Technol ., 44, 741, 2010.
57. Minocchieri, S., Burren, J.M., Bachmann, M.A., Stern, G., Wildhaber, J., Buob, S., Schindel, R.,
Kraemer, R., Frey, U.P., and Nelle, M., Development of the premature infant nose throat-model (PrINT-
Model)—An upper airway replica of a premature neonate for the study of aerosol delivery, Pediatr. Res .,
64, 141, 2008.
58. Janssens, H.M., de Jongste, J.C., Fokkens, W.J., Robben, S.G., Wouters, K., and Tiddens, H.A., The
Sophia Anatomical Infant Nose-Throat (Saint) model: A valuable tool to study aerosol deposition in
infants, J. Aerosol Med ., 14, 433, 2001.
59. Cheng, Y.S., Aerosol deposition in the extrathoracic region, Aerosol Sci. Technol ., 37, 659, 2003.
60. Xi, J.X. and Longest, P.W., Transport and deposition of micro-aerosols in realistic and simpliied models
of the oral airway, Ann. Biomed. Eng ., 35, 560, 2007.
61. Zhang, Z., Kleinstreuer, C., and Kim, C.S., Micro-particle transport and deposition in a human oral air-
way model, J. Aerosol Sci ., 33, 1635, 2002.
62. Xi, J.X. and Longest, P.W., Effects of oral airway geometry characteristics on the diffusional deposition
of inhaled nanoparticles, J. Biomech. Eng ., 130, 2008.
63. Inthavong, K., Wen, H., Tian, Z.F., and Tu, J.Y., Numerical study of ibre deposition in a human nasal
cavity, J. Aerosol Sci ., 39, 253, 2008.
64. Tian, Z.F., Inthavong, K., and Tu, J.Y., Deposition of inhaled wood dust in the nasal cavity, Inhal. Toxicol .,
19, 1155, 2007.
65. Shi, H., Kleinstreuer, C., and Zhang, Z., Laminar airlow and nanoparticle or vapor deposition in a human
nasal cavity model, J. Biomech. Eng ., 128, 697, 2006.
66. Schroeter, J.D., Kimbell, J.S., and Asgharian, B., Analysis of particle deposition in the turbinate and olfac-
tory regions using a human nasal computational luid dynamics model, J. Aerosol Med ., 19, 301, 2006.
67. Wang, S.M., Inthavong, K., Wen, J., Tu, J.Y., and Xue, C.L., Comparison of micron- and nanoparticle
deposition patterns in a realistic human nasal cavity, Respir. Physiol. Neurobiol ., 166, 142, 2009.
68. Heenan, A.F., Matida, E., Pollard, A., and Finlay, W.H., Experimental measurements and computational
modeling of the low ield in an idealized human oropharynx, Exp. Fluids , 35, 70, 2003.
69. Chen, X.B., Lee, H.P., Chong, V.F., and Wang de, Y., A computational luid dynamics model for drug
delivery in a nasal cavity with inferior turbinate hypertrophy, J. Aerosol Med. Pulm. Drug Deliv ., 23, 329,
2010.
70. Rosati, J., Burton, R., McCauley, R., and McGregor, G., Three dimensional modeling of the human
respiratory system, presented at 29th Annual Meeting of the American Association for Aerosol Research ,
Portland, OR, October 25-29, 2010.
71. National Institutes of Health (NIH). National Library of Medicine Visible Human Project. http://www.
nlm.nih.gov/research/visible/visible_human.html. Accessed January 31, 2011.
72. Yeh, H.C. and Schum, G.M., Models of human lung airways and their application to inhaled particle
deposition, Bull. Math. Biol ., 42, 461, 1980.
73. Pedley, T.J. and Kamm, R.D., Dynamics of gas low and pressure-low relationships, in The Lung:
Scientiic Foundations , Volume I , Crystal, R.G. and West, J.B. (Eds.), Raven Press, New York, 1991.
74. Fox, R.W. and McDonald, A.T., Introduction to Fluid Mechanics , 3rd Edn., Wiley & Sons, New York, 1985.
75. Martonen, T.B., Musante, C.J., Segal, R.A., Schroeter, J.D., Hwang, D., Dolovich, M.A., Burton, R.,
Spencer, R.M., and Fleming, J.S., Lung models: Strengths and limitations, Respir. Care , 45, 712, 2000.
76. Weibel, E., Design of airways and blood vessels considered as branching trees, in The Lung: Scientiic
Foundations, Volume I , Crystal, R.G. and West, J.B. (Eds.), Raven Press, New York, 1991.
77. Dean, W.R., The streamline of motion of a curved pipe, Philos. Mag ., 5, 623, 1928.
78. Pedley, T.J. and Drazen, J.M., Aerodynamics theory, in Handbook of Physiology, Section 3: The
Respiratory System, Volume 3: Mechanics of Breathing , Mackelm, P.T. and Mead, J. (Eds.), Williams &
Wilkins, Baltimore, MD, 1986.
79. Taylor, G.I., The criterion for turbulence in curved pipes, Proc. R. Soc. London Ser. A , 124, 243, 1929.
80. Yao, L.S. and Berger, S.A., Entry low in a curved pipe, J. Fluid Mech ., 67, 177, 1975.
Search WWH ::




Custom Search