Environmental Engineering Reference
In-Depth Information
the ratio between the experimental and CNT magnitudes of the nucleation rate is about hundred
orders of magnitude for this group.
In the case of Cs, a more detailed investigation was carried out which showed that the approxi-
mate Equation 19.61 can be used instead of the rigorous Equation 19.60 to calculate the nucleation
rate from critical nucleus surface tension σ S and supersaturation ratio S or the surface tension and
radius R S of critical drop from the nucleation rate and S with adequately high accuracy.
REFERENCES
1. J. Frenkel, Kinetic Theory of Liquids . Dover, New York, 1946.
2. J. Wö, R. Strey, C.H. Heath, and B.E. Wyslouzil, Empirical function for homogeneous water nucleation
rates, J. Chem. Phys ., 2002, 117, 4954-4960.
3. M. Rusyniak, V. Abdelsayed, J. Campbell, and M.S. El-Shall, Vapor phase homogeneous nucleation of
higher alkanes: Dodecane, hexadecane, and octadecane. 1. Critical supersaturation and nucleation rate
measurements, J. Phys. Chem. B , 2001, 105, 11866-11872.
4. K. Iland, J. Wedekind, J. Wö, P.E. Wagner, and R. Strey, Homogeneous nucleation rates of 1-pentanol,
J. Chem. Phys ., 2004, 121, 12259-12264.
5. J. Martens, H. Uchtmann, and F. Hensel, Homogeneous nucleation of mercury vapor, J. Phys. Chem .,
1987, 91, 2489-2492.
6. F.T. Ferguson, J.A. Nuth III, and L.U. Lilleleht, Experimental studies of the vapor phase nucleation of
refractory compounds. IV. The condensation of magnesium, J. Chem. Phys ., 1996, 104, 3205-3210.
7. A.A. Onischuk, P.A. Purtov, A.M. Baklanov, V.V. Karasev, and S.V. Vosel, Evaluation of surface tension
and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation
ratio: Metal vapor homogeneous nucleation, J. Chem. Phys ., 2006, 124, 014506 (1-13).
8. J. Lothe and G.M. Pound, Reconsiderations of the nucleation theory, J. Chem. Phys ., 1962, 36,
2080-2085.
9. H. Reiss and J.L. Katz, Resolution of the translation-rotation paradox in the theory of irreversible con-
densation, J. Chem. Phys ., 1967, 46, 2496-2499.
10. H. Reiss, J.L. Katz, and E.R. Cohen, Translation-rotation paradox in the theory of nucleation, J. Chem.
Phys ., 1968, 48, 5553-5560.
11. I. Kusaka, Statistical mechanics of nucleation: Incorporating translational and rotational free energy into
thermodynamics of a microdroplet, Phys. Rev. E ., 2006, 73, 031607 (1-10).
12. J.W. Gibbs, Thermodynamics and Statistical Mechanics , Nauka, Moscow, Russia, 1982.
13. V.G. Baidakov and G.Sh. Boltachev, Curvature dependence of the surface tension of liquid and vapor
nuclei, Phys. Rev. E , 1999, 59, 469-475.
14. I. Hadjiagapiou, Density functional theory for spherical drops, J. Phys. Condens. Matter ., 1994,
6, 5303-5322.
15. D.J. Lee, M.M. Telo da Gama, and K.E. Gubbins, A microscopic theory for spherical interfaces: Liquid
drops in the canonical ensemble, J. Chem. Phys ., 1986, 85, 490-499.
16. M.A. Hooper and S. Nordholm, Generalized van der Waals theory. XII. Curved interfaces in simple
luids, J. Chem. Phys ., 1984, 81, 2432-2438.
17. R. Guermeur, F. Biquard, and C. Jacolin, Density proiles and surface tension of spherical interfaces.
Numerical results for nitrogen drops and bubbles. J. Chem. Phys ., 1985, 82, 2040-2051.
18. T.V. Bykov and A.K. Shchekin, A surface tension, the Tolman length and effective rigidity constant of the
droplet with large radius of curvature, Inorg. Mater ., 1999, 35, 641-645.
19. T.V. Bykov and A.K. Shchekin, Thermodynamical characteristics of the small droplet in terms of density
functional method, Colloid J ., 1999, 1, 144-151.
20. A.H. Falls, L.E. Scriven, and H.T. Davis, Structure and stress in microstructures, J. Chem. Phys ., 1981,
75, 3986-4002.
21. A.H. Falls, L.E. Scriven, and H.T. Davis, Adsorption, structure and stress in binary interfaces, J. Chem.
Phys ., 1983, 78, 7300-7317.
22. K. Koga, X.C. Zeng, and A.K. Shchekin, Validity of Tolman's equation: How large should a droplet be?
J. Chem. Phys ., 1998, 109, 4063-4070.
23. M. Iwamatsu, A double-parabola model for the non-classical Cahn-Hilliard theory of homogeneous
nucleation, J. Phys. Condens. Matter ., 1993, 5, 7537-7550.
24. L.S. Bartell, Tolman's δ, surface curvature, compressibility effects, and the free energy of drops, J. Phys.
Chem. B , 2001, 105, 11615-11615.
Search WWH ::




Custom Search