Environmental Engineering Reference
In-Depth Information
298. U.S. EPA, Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation
(TRIM.Expo/APEX, Version 4.3). Vol. 2: Technical Support Document. Report no. EPA-452/B-08-001b.
Ofice of Air Quality Planning and Standards, Research Triangle Park, NC. Available at: http://www.epa.
gov/ttn/fera/human_apex.html, 2008b.
299. Burke, J. M., Zufall, M. J., and Ozkaynak, H. A population exposure model for particulate matter: Case
study results for PM2.5 in Philadelphia, PA, J. Expo. Anal. Environ. Epidemol ., 11, 470, 2001.
300. U.S. EPA, Exposure model for individuals, 2011, Available at: http://www.epa.gov/heasd/products/emi/
emi.html
301. National Institute for Public Health and the Environment (RIVM). Multiple path particle dosimetry
model (MPPD v 1.0): A model for human and rat airway particle dosimetry. Bilthoven, the Netherlands.
RIVA Report 650010030. Model available online at http://www.ara.com/products/mppd.htm., 2002.
302. Bondesson, E., Bengtsson, T., Borgstrom, L., Nilsson, L. E., Norrgren, K., Olsson, B., Svensson, M., and
Wollmer, P., Dose delivery late in the breath can increase dry powder aerosol penetration into the lungs,
J. Aerosol Med ., 18, 23, 2005.
303. Kleinstreuer, C., Shi, H., and Zhang, Z., Computational analyses of a pressurized metered dose inhaler
and a new drug-aerosol targeting methodology, J. Aerosol. Med ., 20, 294, 2007.
304. Zhang, Y., Gilbertson, K., and Finlay, W. H., In vivo-in vitro comparison of deposition in three mouth-
throat models with Qvar and Turbuhaler inhalers, J. Aerosol. Med ., 20, 227, 2007.
305. Coates, M. S., Fletcher, D. F., Chan, H. K., and Raper, J. A., Effect of design on the performance of a
dry powder inhaler using computational luid dynamics. Part 1: Grid structure and mouthpiece length,
J. Pharm. Sci ., 93, 2863, 2004.
306. Coates, M. S., Chan, H. K., Fletcher, D. F., and Chiou, H., Inluence of mouthpiece geometry on the
aerosol delivery performance of a dry powder inhaler, Pharm. Res ., 24, 1450, 2007.
307. Longest, P. W., Hindle, M., Das Choudhuri, S., and Xi, J. X., Comparison of ambient and spray aerosol
deposition in a standard induction port and more realistic mouth-throat geometry, J. Aerosol Sci ., 39, 572,
2008.
308. Longest, P. and Hindle, M., Evaluation of the Respimat soft mist inhaler using a concurrent CFD and in
vitro approach, J. Aerosol Med. Pulm. Drug Deliv ., 22, 99, 2009.
309. Kimbell, J. S., Segal, R. A., Asgharian, B., Wong, B. A., Schroeter, J. D., Southall, J. P., Dickens, C. J.,
Brace, G., and Miller, F. J., Characterization of deposition from nasal spray devices using a computa-
tional luid dynamics model of the human nasal passages, J. Aerosol Med ., 20, 59, 2007.
310. Longest, P. W. and Hindle, M., CFD simulations of enhanced condensational growth (ECG) applied to
respiratory drug delivery with comparisons to in vitro data, J. Aerosol Sci ., 41, 805, 2010.
311. Hindle, M. and Longest, P. W., Evaluation of enhanced condensational growth (ECG) for controlled
respiratory drug delivery in a mouth-throat and upper tracheobronchial model, Pharm. Res ., 27, 1800,
2010.
Search WWH ::




Custom Search