Biomedical Engineering Reference
In-Depth Information
Munakata-Marr J, Matheson VG, Forney LJ, Tiedje JM, McCarty PL. 1997. Long-term biodeg-
radation of trichloroethylene influenced by bioaugmentation and dissolved oxygen in
aquifer microcosms. Environ Sci Technol 31:786-791.
Nelson MJ, Montgomery SO, O'Neill EJ, Prichard PH. 1986. Aerobic metabolism of trichloro-
ethylene by a bacterial isolate. Appl Environ Microbiol 52:383-384.
Pontius FWA. 1992. Current look at the federal drinking water regulations. Am Water Works
Assoc J 84:36-50.
Roberts PV, Hopkins GD, Mackay DM, Semprini L. 1990. A field evaluation of in-situ
biodegradation of chlorinated ethenes: Part 1, Methodology and field site characterization.
Ground Water 28:591-604.
Semprini L. 1997. Strategies for the aerobic co-metabolism of chlorinated solvents. Curr Opin
Biotechnol 8:296-308.
Semprini L, Roberts PV, Hopkins GD, McCarty PL. 1990. A field evaluation of in-situ
biodegradation of chlorinated ethenes: Part 2, Results of biostimulation and biotransfor-
mation experiments. Ground Water 28:715-727.
Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, McCarty PL. 1991. A field evaluation of
in situ biodegradation of chlorinated ethenes: Part 3, Studies of competitive inhibition.
Ground Water 29:239-250.
Semprini L, Ely RL, Lang MM. 1998. Modeling of cometabolism for the in-situ biodegradation
and trichloroethylene and other chlorinated aliphatic hydrocarbons. In Sikdar SK, Irvine
RL, eds, Bioremediation: Principles and Practice Vol. (1) Fundamentals and Applications.
Technomic Publishing Co., Lancaster, PA, USA, pp 89-134.
Semprini L, Dolan ME, Hopkins GD, McCarty PL. 2005. Development of effective aerobic
cometabolic systems for the in situ transformation of problematic chlorinated solvent
mixtures. SERDP Final Report ER-1127, February. http://www.serdp.org/Program-Areas/
Environmental-Restoration/Contaminated-Groundwater/ER-1127/ER-1127 . Accessed June
20, 2012.
Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL. 2007a. Bioaugmentation of
butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-
dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Eur J Soil Biol 43:322-327.
Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL. 2007b. Laboratory, field, and
modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ
cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane.
Adv Water Res 30:1528-1546.
Semprini L, Dolan ME, Hopkins GD, McCarty PL. 2009. Bioaugmentation with butane-
utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane
and 1,1-dichloroethene. J Contam Hydrol 103:157-167.
Shah NN, Taylor ML, Taylor RT. 1996. Batch cultivation of Methylosinus trichosporium OB3b:
Characterization of poly b -hydroxybutyrate production under methane-dependent growth
conditions. Biotechnol Bioengineer 49:161-171.
Shields MS, Reagin MJ. 1992. Selection of a Pseudomonas cepacia strain constitutive for the
degradation of trichloroethylene. Appl Environ Microbiol 58:3977-3983.
Shields MS, Reagin MJ, Gerger RR, Somerville C. 1995. TOM, a new aromatic degradative
plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl Environ Microbiol
61:1352-1356.
Siegrist RL, Crimi M, Simpkin TJ (eds). 2011. In Situ Chemical Oxidation for Groundwater
Remediation. In Ward CH, ed, SERDP/ESTCP Environmental Remediation Technology
Monograph Series. Springer Science+Business Media, New York, NY, USA, 678 p.
Search WWH ::




Custom Search