Biology Reference
In-Depth Information
Hoffer, J. A., & Loeb, G. E. (1980). Implantable electrical and mechanical interfaces with
nerve and muscle. Annals of Biomedical Engineering , 8 (4), 351-360.
Horch, K., Meek, S., Taylor, T. G., &Hutchinson, D. T. (2011). Object discrimination with
an artificial hand using electrical stimulation of peripheral tactile and proprioceptive
pathways with intrafascicular electrodes. IEEE Transactions on Neural Systems and Reha-
bilitation Engineering , 19 , 483-489.
Inmann, A., & Haugland, M. (2004). Implementation of natural sensory feedback in a por-
table control system for a hand grasp neuroprosthesis. Medical Engineering & Physics , 26 ,
449-458.
Jarosz, R., Littlepage, M. M., Creasey, G., & McKenna, S. L. (2012). Functional electrical
stimulation in spinal cord injury respiratory care. Topics in Spinal Cord Injury Rehabilita-
tion , 18 , 315-321.
Kawada, T., Zheng, C., Tanabe, S., Uemura, T., Sunagawa, K., & Sugimachi, M. (2004).
A sieve electrode as a potential autonomic neural interface for bionic medicine. In 26th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society ,
Vol. 2, (pp. 4318-4321).
Kilgore, K. L., Hoyen, H. A., Bryden, A. M., Hart, R. L., Keith, M. W., & Peckham, P. H.
(2008). An implanted upper-extremity neuroprosthesis using myoelectric control. Jour-
nal of Hand Surgery , 33 , 539-550.
Kottink, A. I., Buschman, H. P., Kenney, L. P., Veltink, P. H., Slycke, P., Bultstra, G., et al.
(2004). The sensitivity and selectivity of an implantable two-channel peroneal nerve
stimulator system for restoration of dropped foot. Neuromodulation , 7 , 277-283.
Kovacs, G. T., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Jr., Santina, C. D.,
Lewis, E. R., et al. (1994). Silicon-substrate microelectrode arrays for parallel recording
of neural activity in peripheral and cranial nerves. IEEE Transactions on Biomedical Engi-
neering , 41 , 567-577.
Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield, K. A., et al.
(2009). Targeted muscle reinnervation for real-time myoelectric control of
multifunction artificial arms. Journal of the American Medical Association , 301 , 619-628.
Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N., & Dewald, J. P. (2007).
Redirection of cutaneous sensation from the hand to the chest skin of human amputees
with targeted reinnervation. Proceedings of
the National Academy of Sciences , 104 ,
20061-20066.
Lacour, S. P., Benmerah, S., Tarte, E., FitzGerald, J., Serra, J., McMahon, S., et al. (2010).
Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med-
ical and Biological Engineering and Computing , 48 , 945-954.
Lacour, S. P., Fitzgerald, J. J., Lago, N., Tarte, E., McMahon, S., & Fawcett, J. (2009). Long
micro-channel electrode arrays: A novel type of regenerative peripheral nerve interface.
IEEE Transactions on Neural Systems and Rehabilitation Engineering , 17 , 454-460.
Lago, N., Ceballos, D., Rodr ยด guez, F. J., Stieglitz, T., & Navarro, X. (2005). Long term
assessment of axonal regeneration through polyimide regenerative electrodes to interface
the peripheral nerve. Biomaterials , 26 , 2021-2031.
Lago, N., Udina, E., Ramachandran, A., & Navarro, X. (2007). Neurobiological assessment
of regenerative electrodes for bidirectional interfacing injured peripheral nerves. IEEE
Transactions on Biomedical Engineering , 54 , 1129-1137.
Lago, N., Yoshida, K., Koch, K. P., &Navarro, X. (2007). Assessment of biocompatibility of
chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Transac-
tions on Biomedical Engineering , 54 , 281-290.
Lawrence, S. M., Dhillon, G. S., Jensen, W., Yoshida, K., & Horch, K. W. (2004). Acute
peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular
electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 12 ,
345-348.
 
Search WWH ::




Custom Search