Biology Reference
In-Depth Information
Suh, J. K., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide bioma-
terials in cartilage tissue engineering: A review. Biomaterials , 21 (24), 2589-2598.
Suzuki, M., Itoh, S., Yamaguchi, I., Takakuda, K., Kobayashi, H., Shinomiya, K., et al.
(2003). Tendon chitosan tubes covalently coupled with synthesized laminin peptides
facilitate nerve regeneration in vivo. Journal of Neuroscience Research , 72 (5), 646-659.
http://dx.doi.org/10.1002/jnr.10589 .
Tashiro, K., Sephel, G. C., Weeks, B., Sasaki, M., Martin, G. R., Kleinman, H. K., et al.
(1989). A synthetic peptide containing the IKVAV sequence from the A chain of laminin
mediates cell attachment, migration, and neurite outgrowth. The Journal of Biological
Chemistry , 264 (27), 16174-16182.
Teng, Y. D., Lavik, E. B., Qu, X., Park, K. I., Ourednik, J., Zurakowski, D., et al. (2002).
Functional recovery following traumatic spinal cord injury mediated by a unique poly-
mer scaffold seeded with neural stem cells. Proceedings of the National Academy of Sciences of
the United States
of America ,
99 (5),
3024-3029.
http://dx.doi.org/10.1073/
pnas.052678899 .
Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J. M., &Martin, G. R. (1979).
Laminin—A glycoprotein from basement membranes. The Journal of Biological Chemistry ,
254 (19), 9933-9937.
Tomihata, K., & Ikada, Y. (1997). In vitro and in vivo degradation of films of chitin and its
deacetylated derivatives. Biomaterials , 18 (7), 567-575.
Tysseling-Mattiace, V. M., Sahni, V., Niece, K. L., Birch, D., Czeisler, C., Fehlings, M. G.,
et al. (2008). Self-assembling nanofibers inhibit glial scar formation and promote axon
elongation after spinal cord injury. The Journal of Neuroscience , 28 (14), 3814-3823.
http://dx.doi.org/10.1523/JNEUROSCI.0143-08.2008 .
Ueno, H., Yamada, H., Tanaka, I., Kaba, N., Matsuura, M., Okumura, M., et al. (1999).
Accelerating effects of chitosan for healing at early phase of experimental open wound
in dogs. Biomaterials , 20 (15), 1407-1414.
Vachoud, L., & Domard, A. (2001). Physicochemical properties of physical chitin hydrogels:
Modeling and relation with the mechanical properties. Biomacromolecules , 2 (4), 1294-1300.
Vasconcelos, B. C., & Gay-Escoda, C. (2000). Facial nerve repair with expanded poly-
tetrafluoroethylene and collagen conduits: An experimental study in the rabbit. Journal
of Oral and Maxillofacial Surgery , 58 (11), 1257-1262. http://dx.doi.org/10.1053/
joms.2000.16626 .
Wang, A., Ao, Q., Cao, W., Yu, M., He, Q., Kong, L., et al. (2006). Porous chitosan tubular
scaffolds with knitted outer wall and controllable inner structure for nerve tissue engi-
neering. Journal of Biomedical Materials Research. Part A , 79 (1), 36-46. http://dx.doi.
org/10.1002/jbm.a.30683 .
Wang, A., Ao, Q., Wei, Y., Gong, K., Liu, X., Zhao, N., et al. (2007). Physical properties
and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve
regeneration. Biotechnology Letters , 29 (11), 1697-1702. http://dx.doi.org/10.1007/
s10529-007-9460-0 .
Wang, X., Hu, W., Cao, Y., Yao, J., Wu, J., &Gu, X. (2005). Dog sciatic nerve regeneration
across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain , 128 (Pt. 8),
1897-1910. http://dx.doi.org/10.1093/brain/awh517 .
Wang, W., Itoh, S., Konno, K., Kikkawa, T., Ichinose, S., Sakai, K., et al. (2009). Effects of
Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve
regeneration. Journal of Biomedical Materials Research. Part A , 91 (4), 994-1005. http://
dx.doi.org/10.1002/jbm.a.32329 .
Wang, W., Itoh, S., Matsuda, A., Aizawa, T., Demura, M., Ichinose, S., et al. (2008).
Enhanced nerve regeneration through a bilayered chitosan tube: The effect of introduc-
tion of glycine spacer into the CYIGSR sequence. Journal of Biomedical Materials Research.
Part A , 85 (4), 919-928. http://dx.doi.org/10.1002/jbm.a.31522 .
Search WWH ::




Custom Search