Biology Reference
In-Depth Information
progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue
Engineering. Part A , 14 (5), 649-665. http://dx.doi.org/10.1089/tea.2007.0180 .
Novikova, L. N., Novikov, L. N., & Kellerth, J. O. (2003). Biopolymers and biodegradable
smart implants for tissue regeneration after spinal cord injury. Current Opinion in Neurol-
ogy , 16 (6), 711-715. http://dx.doi.org/10.1097/01.wco.0000102620.38669.3e .
Novikova, L. N., Pettersson, J., Brohlin, M., Wiberg, M., & Novikov, L. N. (2008).
Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to pro-
mote spinal cord repair. Biomaterials , 29 (9), 1198-1206. http://dx.doi.org/10.1016/j.
biomaterials.2007.11.033 .
Oh, S. H., Kim, J. H., Song, K. S., Jeon, B. H., Yoon, J. H., Seo, T. B., et al. (2008).
Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127
nerve guide conduit. Biomaterials , 29 (11), 1601-1609. http://dx.doi.org/10.1016/j.
biomaterials.2007.11.036 .
Pangburn, S. H., Trescony, P. V., & Heller, J. (1982). Lysozyme degradation of partially
deacetylated chitin, its films and hydrogels. Biomaterials , 3 (2), 105-108.
Patel, M., Mao, L., Wu, B., & Vandevord, P. J. (2007). GDNF-chitosan blended nerve
guides: A functional study. Journal of Tissue Engineering and Regenerative Medicine , 1 (5),
360-367. http://dx.doi.org/10.1002/term.44 .
Patel, M., Mao, L., Wu, B., & VandeVord, P. (2009). GDNF blended chitosan nerve guides:
An in vivo study. Journal of Biomedical Materials Research. Part A , 90 (1), 154-165. http://
dx.doi.org/10.1002/jbm.a.32072 .
Patel, M., VandeVord, P. J., Matthew, H. W., DeSilva, S., Wu, B., &Wooley, P. H. (2008a).
Collagen-chitosan nerve guides for peripheral nerve repair: A histomorphometric study.
Journal of Biomaterials Applications , 23 (2), 101-121. http://dx.doi.org/10.1177/
0885328207084521 .
Patel, M., Vandevord, P. J., Matthew, H. W., DeSilva, S., Wu, B., &Wooley, P. H. (2008b).
Functional gait evaluation of collagen chitosan nerve guides for sciatic nerve repair.
Tissue Engineering. Part C, Methods , 14 (4), 365-370. http://dx.doi.org/10.1089/ten.
tec.2008.0166 .
Patel, M., Vandevord, P. J., Matthew, H., Wu, B., DeSilva, S., & Wooley, P. H. (2006).
Video-gait analysis of
functional recovery of nerve repaired with chitosan nerve
guides.
Tissue
Engineering ,
12 (11),
3189-3199.
http://dx.doi.org/10.1089/
ten.2006.12.3189 .
Pavinatto, F. J., Pavinatto, A., Caseli, L., Santos, D. S., Jr., Nobre, T. M., Zaniquelli, M. E.,
et al. (2007). Interaction of chitosan with cell membrane models at the air-water inter-
face. Biomacromolecules , 8 (5), 1633-1640. http://dx.doi.org/10.1021/bm0701550 .
Peniche, C., Arguelles-Monal, W., Peniche, H., & Acosta, N. (2003). Chitosan: An atractive
biocompatible polymer for microencapsulation. Macromolecular Bioscience , 3 , 511-520.
Pfister, L. A., Alther, E., Papaloizos, M., Merkle, H. P., & Gander, B. (2008). Controlled
nerve growth factor release from multi-ply alginate/chitosan-based nerve conduits.
European Journal of Pharmaceutics and Biopharmaceutics , 69 (2), 563-572. http://dx.doi.
org/10.1016/j.ejpb.2008.01.014 .
Pfister, L. A., Papaloizos, M., Merkle, H. P., & Gander, B. (2007). Hydrogel nerve conduits
produced from alginate/chitosan complexes. Journal of Biomedical Materials Research. Part
A , 80 (4), 932-937. http://dx.doi.org/10.1002/jbm.a.31052 .
Pierschbacher, M. D., & Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be
duplicated by small synthetic fragments of the molecule. Nature , 309 (5963), 30-33.
Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y.,
et al. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineer-
ing. Tissue Engineering. Part A , 14 (11), 1787-1797. http://dx.doi.org/10.1089/ten.
tea.2007.0393 .
Search WWH ::




Custom Search