Geography Reference
In-Depth Information
b
aa
2,
T
2
tan

.
(17)
 
T
 
cos

2
1
2
1,2
1,
T
2
2,
T
From the first expression, we obtain:

 
1,2
2,
T
;
(18)
1,
T
tan
cos


T
2
2,
T
1
and from the second expression it results that:
 
cos
 
tan
2,
T
1,2
2
2,
T
T

2
;
(19)
1,
T
cos


tan
2
2 ,
T
T
2
So by elimianatig the
parameter, we obtain:
1, T
 
cos
 
tan

2,
T
1,2
2
2,
T
T
1,2
2,
T
2
and :
tan
tan
T
T
1
2
 
tan
 
tan

cos
 
tan

tan
;
1,2
2,
T
T
2,
T
T
1,2
2
2,
T
T
T
2
1
1
2
On this basis, the following implicit computing relation of the latitude angular difference
is obtained:
2, T
tan
T

  
cos
 
tan
2
(20)
2,
T
1,2
1,2
2
2,
T
T
tan
 
tan
1
T
T
1
2
and in continuation:
 

(21)
T
2
2,
T
With the determinated in this mode value of the angular difference
, can be calculated
2, T
in this phase and the value
 of the longitude angular difference by means of one of the
two explicit relations (7.1) or (7.2).
1, T
In similar mode:
 

(22)
T
1
1,
T
After obtaining, in the presented mode, of the target geographic coordinates,  and  , in
continuation it is possible to calculate and the linear distances: a 1 , a 2 and b 1 , b 2 , on the
longitude and respectively latitude directions, between the video camera successive
positions and, respectively, between these positions and the sighted target, with the
relations:
 
Search WWH ::




Custom Search