Information Technology Reference
In-Depth Information
viable cells for controlled biomechanical manipulation. Nanotechnology , 14:551-
556, 2003.
[43] V. I. Merkulov et al. Patterned growth of individual and multiple vertically aligned
carbon nanofibers. Appl. Phys. Lett. , 76(24):3555-3557, 2000.
[44] V. I. Merkulov et al. Shaping carbon nanostructures by controlling the synthesis
process. Appl. Phys. Lett. , 79:1178-1180, 2001.
[45] V. I. Merkulov et al. Sharpening of carbon nanocone tips during plasma-enhanced
chemical vapor growth. Chem. Phys. Lett. , 350:381-385, 2001.
[46] V. I. Merkulov et al. Effects of spatial separation on the growth of vertically aligned
carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Appl.
Phys. Lett. , 80:476-478, 2002.
[47] P. Mussenden, T. Keshavarz, G. Saunders, and C. Burke. Physiological studies re-
lated to the immobilization of Penicillium chrysogenum . EnzymeMicrob. Technol. ,
15:2-7, 1993.
[48] R. Nandi, P. K. Bhattacharyya, A. N. Bhaduri, and S. Sengupta. Synthesis and
lysis of formate by immobilized cells of Escherichia coli . Biotechnol. Bioeng. ,
39:775-780, 1992.
[49] M. S. Nawaz, W. Franklin, and C. E. Cerniglia. Degradation of acrylamide by
immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia . Can. J.
Microbiol. , 39:207-212, 1992.
[50] E. Ong et al. Enzyme immobilization using a cellulose-binding domain: properties
of a b-glucosidase fusion protein. Bio/Technol. , 7:604-607, 1989.
[51] J. K. Park and H. N. Chang. Microencapsulation of microbial cells. Biotechnol.
Adv. , 18:303-319, 2000.
[52] M. Pons, D. Gagne, J. C. Nicolas, and M. Mehtali. A new cellular model of re-
sponse to estrogens: a bioluminescent test to characterize (anti) estrogen molecules.
BioTechniques , 9:450-459, 1990.
[53] R. D. Richins, A. Mulchandani, and W. Chen. Expression, immobilization, and
enzymatic characterization of cellulose-binding domain-organo phosphorous hy-
drolase fusion enzymes. Biotechnol. Bioeng. , 69:591-596, 2000.
[54] O. Selifonova, R. S. Burlage, and T. Barkay. Bioluminescent sensors for detection
of bioavailable hg(ii) in the environment. Appl. Environ. Microbiol. , 59:3083-
3090, 1993.
[55] O. V. Selifonova and R. W. Eaton. Use of an ipb-lux fusion to study regulation
of the isopropylbenzene catabolism operon of Pseudomonas putida re204 and
to detect hydrophobic pollutants in the environment. Appl. Environ. Microbiol. ,
62:778-783, 1996.
[56] M. L. Simpson et al. Bioluminescent-bioreporter integrated circuits form novel
whole-cell biosensors. Trends Biotech. , 16:332-338, 1998.
[57] M. L. Simpson et al. An integrated cmos microluminometer for low-level lumi-
nescence sensing in the bioluminescent bioreporter integrated circuit. Sens. Act.
B , 72(2):135-141, 2001.
[58] D. A. Stenger et al. Detection of physiologically active compounds using cell-based
biosensors. Trends Biotechnol. , 19(8):304-309, 2001.
Search WWH ::




Custom Search