Chemistry Reference
In-Depth Information
formaldehyde and peroxides by air oxidation of high purity polyoxyethylene surfactants.
Contact Dermatitis , 39(1):14-20. (c) Bergh, M., Shao, L.P., Hagelthorn, G., Gafvert, E.,
Nilsson, J.L.G., and Karlberg, A.T. (1998) Contact allergens from surfactants. Atmospheric
oxidation of polyoxyethylene alcohols, formation of ethoxylated aldehydes, and their
allergenic activity. J. Pharm. Sci. , 87(3):276-282. Donbrow, M. (1987) Stability of the
polyoxyethylene chain. In: Schick, M.J. (Ed.), Nonionic Surfactants: Physical Chemistry ,
Surfactant Science Series, Vol. 23, pp. 1011
1072. (e) Frontini, R. and Mielck, J.B. (1995)
Formation of formaldehyde in polyethyleneglycol and in poloxamer under stress conditions.
Int. J. Pharm. , 114(1):121-123.
95. Greco, S., Authelin, J.-R., Leveder, C., and Segalini, A. (2012) A practical method to predict
physical stability of amorphous solid dispersions. Pharm. Res. , 29(10):2792-2805.
96. (a) Lauer, M.E., Siam, M., Tardio, J., Page, S., Kindt, J.H., and Grassmann, O. (2013) Rapid
assessment of homogeneity and stability of amorphous solid dispersions by atomic force
microscopy: from bench to batch. Pharm. Res. , 30(8):2010-2022. (b) Yang, J., Grey, K., and
Doney, J. (2010) An improved kinetics approach to describe the physical stability of
amorphous solid dispersions. Int. J. Pharm. , 384(1-2):24-31.
97. (a) Hancock, B.C., Shamblin, S.L., and Zografi, G. (1995) Molecular mobility of amorphous
pharmaceutical solids below their glass transition temperatures. Pharm. Res. , 12(6):799-806.
(b) Hancock, B.C. and Zograf, G. (1997) Characteristics and significance of the amorphous
state in pharmaceutical systems. J. Pharm. Sci. , 86(1):1-12.
98. (a) Marsac, P., Li, T., and Taylor, L. (2009) Estimation of drug-polymer miscibility and
solubility in amorphous solid dispersions using experimentally determined interaction
parameters. Pharm. Res. , 26(1):139-151. (b) Qian, F., Huang, J., and Hussain, M.A.
(2010) Drug-polymer solubility and miscibility: stability consideration and practical chal-
lenges in amorphous solid dispersion development. J. Pharm. Sci. , 99(7):2941-2947. (c) van
Drooge, D.J., Hinrichs, W.L.J., Visser, M.R., and Frijlink, H.W. (2006) Characterization of
the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using
differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J.
Pharm. , 310(1-2):220-229.
99. Miller, J.M., Beig, A., Carr, R.A., Spence, J.K., and Dahan, A. (2012) A win-win solution in
oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases
apparent solubility without sacrifice of intestinal membrane permeability. Mol. Pharm. ,
9(7):2009-2016.
100. (a) Dahan, A., Miller, J.M., Hoffman, A., Amidon, G.E., and Amidon, G.L. (2010) The
solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers:
mechanistic modeling and application to progesterone. J. Pharm. Sci. , 99(6):2739-2749.
(b) Miller, J.M. and Dahan, A. (2012) Predicting the solubility-permeability interplay when
using cyclodextrins in solubility-enabling formulations: model validation. Int. J. Pharm. , 430
(1-2):388-391.
101. Miller, J.M., Beig, A., Krieg, B.J., Carr, R.A., Borchardt, T.B., Amidon, G.E., Amidon, G.L.,
and Dahan, A. (2011) The solubility-permeability interplay: mechanistic modeling and
predictive application of the impact of micellar solubilization on intestinal permeation. Mol.
Pharm. , 8(5):1848-1856.
102. (a) Beig, A., Miller, J.M., and Dahan, A. (2012) Accounting for the solubility-permeability
interplay in oral formulation development for poor water solubility drugs: the effect of PEG-
400 on carbamazepine absorption. Eur. J. Pharm. Biopharm. , 81(2):386-391. (b) Miller,
J.M., Beig, A., Carr, R.A., Webster, G.K., and Dahan, A. (2012) The solubility-permeability
-
Search WWH ::




Custom Search