Civil Engineering Reference
In-Depth Information
TABLE 7.11
Reduction Factors for Stress-Strain Relationship of Carbon Steel
at Elevated Temperatures
Reduction Factors at Temperature
θ
Relative to the Value of
f y or E a at 20
C
Reduction Factor
(Relative to f y ) for
Effective Yield
Strength
k y,θ = f y,θ /f y
°
Reduction Factor
(Relative to E a ) for
the Slope of the
Linear Elastic
Range k E, θ = E a, θ /E a
Reduction Factor
(Relative to f y ) for
Proportional Limit
k p,θ = f p,θ /f y
Steel
Temperature,
θ
20
°
C
1.0
1.0
1.0
100
°
C
1.0
1.0
1.0
200
°
C
1.0
0.807
0.900
300
°
C
1.0
0.613
0.80
400
°
C
1.0
0.42
0.700
500
°
C
0.780
0.360
0.600
600
°
C
0.470
0.180
0.310
700
°
C
0.230
0.075
0.130
800
°
C
0.110
0.050
0.090
900
°
C
0.06
0.0375
0.0675
1000
°
C
0.040
0.025
0.045
1100
°
C
0.02
0.0125
0.0225
1200
°
C
0.00
0.0
0.0
Note that there is no need to consider lateral torsional buckling unless
λ LT com >
0
:
4, and the correction factor of 1.2 simply allows for uncertainties.
In the load resistance domain, buckling capacity at maximum temperature
θ a.max is
1
γ M : fi
Ak y :θ: max f y χ fi
1
N b : fi : t : Rd =
:
2
In the load resistance domain, buckling capacity at maximum temperature
θ a.max is reduced yield strength = k y.q.max f y at
θ a.max
Reduction factor
χ fi for flexural buckling based on:
Buckling curve (c)
Search WWH ::




Custom Search