Biology Reference
In-Depth Information
References
Alvarez-Vasquez, F., et al. (2005). Simulation and validation of modelled sphingolipid metab-
olism in Saccharomyces cerevisiae. Nature 433, 425-430.
Amantonico, A., Urban, P. L., and Zenobi, R. (2010). Analytical techniques for single-cell
metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398, 2493-2504.
Bennett, B. D., Yuan, J., Kimball, E. H., and Rabinowitz, J. D. (2008). Absolute quantitation of
intracellular metabolite concentrations by an isotope ratio-based approach. Nat. Protoc. 3,
1299-1311.
Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., and Rabinowitz, J. D.
(2009). Absolute metabolite concentrations and implied enzyme active site occupancy in
Escherichia coli. Nat. Chem. Biol. 5, 593-599.
Bolten, C. J., Kiefer, P., Letisse, F., Portais, J.-C., and Wittmann, C. (2007). Sampling for
metabolome analysis of microorganisms. Anal. Chem. 79, 3843-3849.
Buescher, J. M., Czernik, D., Ewald, J. C., Sauer, U., and Zamboni, N. (2009). Cross-platform
comparison of methods for quantitative metabolomics of primary metabolism. Anal.
Chem. 81, 2135-2143.
Buescher, J. M., Moco, S., Sauer, U., and Zamboni, N. (2010). Ultrahigh performance liquid
chromatography tandem mass spectrometry method for fast and robust quantification of
anionic and aromatic metabolites. Anal. Chem. 82, 4403-4412.
Buescher, J. M., Liebermeister, W., Jules, M., et al. (2012). Global network reorganization
during dynamic adaptations of Bacillus subtilis metabolism. Science 335, 1099-1103.
Buziol, S., Bashir, I., Baumeister, A., Claassen, W., Noisommit-Rizzi, N., Mailinger, W., and
Reuss, M. (2002). New bioreactor-coupled rapid stopped-flow sampling technique for
measurements of metabolite dynamics on a subsecond time scale. Biotechnol. Bioeng.
80, 632-636.
Carnicer, M., Canelas, A. B., Ten Pierick, A., Zeng, Z., van Dam, J., Albiol, J., Ferrer, P.,
Heijnen, J. J., and van Gulik, W. (2011). Development of quantitative metabolomics
for Pichia pastoris. Metabolomics 8, 284-298.
Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K., and Reuss, M. (2002).
Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol.
Bioeng. 79, 53-73.
Christen, S. and Sauer, U. (2011). Intracellular characterization of aerobic glucosemetabolism in
seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res. 11, 263-272.
Ewald, J. C., Heux, S., and Zamboni, N. (2009). High-throughput quantitative metabolomics:
workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal.
Chem. 81, 3623-3629.
Fendt, S.-M., Buescher, J. M., Rudroff, F., Picotti, P., Zamboni, N., and Sauer, U. (2010).
Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis
upon perturbations in enzyme capacity. Mol. Syst. Biol. 6, 356.
Fuhrer, T., Heer, D., Begemann, B., and Zamboni, N. (2011). High-throughput, accurate mass
metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrom-
etry. Anal. Chem. 83, 7074-7080.
Gerosa, L. and Sauer, U. (2011). Regulation and control of metabolic fluxes in microbes. Curr.
Opin. Biotechnol. 22, 566-575.
Hattori, M., Okuno, Y., Goto, S., and Kanehisa, M. (2003). Development of a chemical struc-
ture comparison method for integrated analysis of chemical and genomic information in
the metabolic pathways. J. Am. Chem. Soc. 125, 11853-11865.
Search WWH ::




Custom Search