Biology Reference
In-Depth Information
Luhn, S., Berth, M., Hecker, M., and Bernhardt, J. (2003). Using standard positions and image
fusion to create proteome maps from collections of two-dimensional gel electrophoresis
images. Proteomics 3(7), 1117-1127.
Maass, S., Sievers, S., Z¨hlke, D., Kuzinski, J., Sappa, P. K., Muntel, J., Hessling, B.,
Bernhardt, J., Sietmann, R., V¨ lker, U., Hecker, M., and Becher, D. (2011). Efficient,
global-scale quantification of absolute protein amounts by integration of targeted mass
spectrometry and two-dimensional gel-based proteomics. Anal. Chem. 83(7), 2677-2684.
Maier, T., Schmidt, A., Guell, M., Kuhner, S., Gavin, A. C., Aebersold, R., and Serrano, L.
(2011). Quantification of mRNA and protein and integration with protein turnover in a
bacterium. Mol. Syst. Biol. 7, 511.
Mallick, P., Schirle, M., Chen, S. S., Flory, M. R., Lee, H., Martin, D., Ranish, J., Raught, B.,
Schmitt, R., Werner, T., K¨ster, B., and Aebersold, R. (2007). Computational prediction of
proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25(1), 125-131.
Malmstr¨m, J., Beck, M., Schmidt, A., Lange, V., Deutsch, E. W., and Aebersold, R. (2009).
Proteome-wide cellular protein concentrations of the human pathogen Leptospira interro-
gans . Nature 460(7256), 762-765.
Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., Gevaert, K.,
Vandekerckhove, J., and Apweiler, R. (2005). PRIDE: the proteomics identifications data-
base. Proteomics 5(13), 3537-3545.
Mayya, V., Rezual, K., Wu, L., Fong, M. B., and Han, D. K. (2006). Absolute quantification of
multisite phosphorylation by selective reaction monitoring mass spectrometry: determina-
tion of inhibitory phosphorylation status of cyclin-dependent kinases. Mol. Cell. Proteo-
mics 5(6), 1146-1157.
Michalik, S., Bernhardt, J., Otto, A., Moche, M., Becher, D., Meyer, H., Lalk, M.,
Schurmann, C., Schlueter, R., Kock, H., Gerth, U., and Hecker, M. (2012). Life and death
of proteins: a case study of glucose-starved Staphylococcus aureus . Mol. Cell. Proteomics
11(9), 558-570.
Michalski, A., Cox, J., and Mann, M. (2011). More than 100,000 detectable peptide species
elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent
LC-MS/MS. J. Proteome Res. 10(4), 1785-1793.
Middelberg, A. P. (1995). Process-scale disruption of microorganisms. Biotechnol. Adv. 13(3),
491-551.
Mirzaei, H., McBee, J. K., Watts, J., and Aebersold, R. (2008). Comparative evaluation of
current peptide production platforms used in absolute quantification in proteomics.
Mol. Cell. Proteomics 7(4), 813-823.
Neidhardt, F. C. (2011). How microbial proteomics got started. Proteomics 11(15), 2943-2946.
Olsen, J. V., Ong, S. E., and Mann, M. (2004). Trypsin cleaves exclusively C-terminal to
arginine and lysine residues. Mol. Cell. Proteomics 3(6), 608-614.
Otto, A., Bernhardt, J., Meyer, H., Schaffer, M., Herbst, F. A., Siebourg, J., M¨der, U.,
Lalk, M., Hecker, M., and Becher, D. (2010). Systems-wide temporal proteomic profiling
in glucose-starved Bacillus subtilis . Nat. Commun. 1, 137.
Panchaud, A., Scherl, A., Shaffer, S. A., von Haller, P. D., Kulasekara, H. D., Miller, S. I., and
Goodlett, D. R. (2009). Precursor acquisition independent from ion count: how to dive
deeper into the proteomics ocean. Anal. Chem. 81(15), 6481-6488.
Panchaud, A., Jung, S., Shaffer, S. A., Aitchison, J. D., and Goodlett, D. R. (2011). Faster,
quantitative, and accurate precursor acquisition independent from ion count. Anal. Chem.
83(6), 2250-2257.
Search WWH ::




Custom Search