Geography Reference
In-Depth Information
f 0 ∂u g
∂p
f 0 ∂u g
∂p
D g
Dt
∂u g
∂x +
∂v g
∂p
∂u g
∂y
∂v a
∂p +
f 0 βy ∂v g
∂p
f 0
=−
+
(6.43a)
f 0
f 0 ∂u g
∂p
D g
Dt
∂v g
∂p
∂v g
∂x +
∂v g
∂p
∂v g
∂y
∂u a
∂p
f 0 βy ∂u g
∂p
f 0
=−
(6.43b)
However, by the thermal wind relations (6.41a) and (6.41b), the first terms on the
right-hand side in each of these may be expressed, respectively, as
f 0 ∂u g
∂p
∂T
∂y
∂u g
∂x +
∂v g
∂p
∂u g
∂y
R
p
∂u g
∂x
∂T
∂x
∂u g
∂y
=−
f 0 ∂u g
∂p
∂T
∂y
∂v g
∂x +
∂v g
∂p
∂v g
∂y
∂v g
∂x
∂v g
∂y
R
p
∂T
∂x
=−
Using the fact that the divergence of the geostrophic wind vanishes,
∂u g ∂x
∂v g ∂y
+
=
0
(6.44)
The above terms can be expressed, respectively, as
∂u g
∂y
R
p
∂T
∂x +
∂v g
∂y
∂T
∂y
R
p
V g
∂y ·∇
Q 2 ≡−
=−
T
(6.45a)
∂u g
∂x
R
p
∂T
∂x +
∂v g
∂x
∂T
∂y
R
p
V g
∂x ·∇
Q 1 ≡−
=−
T
(6.45b)
If we now take partial derivatives of (6.40) with respect to x and y, multiply the
results by Rp 1 , and again apply the chain rule of differentiation to the advection
terms, we obtain
R
p
∂u g
∂x
D g
Dt
∂T
∂x
R
p
∂T
∂x +
∂v g
∂x
∂T
∂y
σ ∂ω
κ
p
∂J
∂x
=−
+
∂x +
(6.46a)
R
p
∂u g
∂y
D g
Dt
∂T
∂y
R
p
∂T
∂x +
∂v g
∂y
∂T
∂y
σ ∂ω
κ
p
∂J
∂y
=−
+
∂y +
(6.46b)
Using the definitions of (6.45a,b), we can rewrite (6.43a,b) and (6.46a,b) as
f 0 ∂u g
∂p
D g
Dt
∂v a
∂p +
f 0 βy ∂v g
∂p
f 0
=−
Q 2 +
(6.47)
R
p
D g
Dt
∂T
∂y
σ ∂ω
κ
p
∂J
∂y
=
Q 2 +
∂y +
(6.48)
 
Search WWH ::




Custom Search