Chemistry Reference
In-Depth Information
75. Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters.
Chem Soc Rev 35(11):1162-1194. doi: 10.1039/B517312B
76. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in
fuel cells and analytical sensors. Nano Today 6(3):240-264
77. Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthetic challenges to the
unique property discoveries. Chem Soc Rev 41(9):3594-3623. doi: 10.1039/C2CS15325D
78. Ayela C, Lalo H, Kuhn A (2013) Introducing a well-ordered volume porosity in
3-dimensional gold microcantilevers. Appl Phys Lett 102(5)
79. Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology, catalysis, and nanotechno-
logy. Chem Rev 104(1):293-346. doi: 10.1021/cr030698+
80. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem
Rev 257(3-4):638-665. doi: 10.1016/j.ccr.2012.09.002
81. Pei Y, Zeng XC (2012) Investigating the structural evolution of thiolate protected gold
clusters from first-principles. Nanoscale 4(14):4054-4072. doi: 10.1039/c2nr30685a
82. Jiang D-E (2010) Understanding and predicting thiolated gold nanoclusters from first prin-
ciples. Wuli Huaxue Xuebao 26(4):999-1016
83. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343-362.
doi: 10.1039/b9nr00160c
84. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised
gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commun 7:
801-802. doi: 10.1039/C39940000801
85. Bri˜as RP, Hu M, Qian L, Lymar ES, Hainfeld JF (2008) Gold nanoparticle size controlled by
polymeric Au(I) thiolate precursor size. J Am Chem Soc 130(3):975-982
86. Simpson CA, Farrow CL, Tian P, Billinge SJL, Huffman BJ, Harkness KM, Cliffel DE
(2010) Tiopronin gold nanoparticle precursor forms aurophilic ring tetramer. Inorg Chem 49
(23):10858-10866. doi: 10.1021/ic101146e
87. Dharmaratne AC, Krick T, Dass A (2009) Nanocluster size evolution studied by mass
spectrometry in room temperature Au 25 (SR) 18 synthesis. J Am Chem Soc 131(38):
13604-13605. doi: 10.1021/ja906087a
88. Gaur S, Miller JT, Stellwagen D, Sanampudi A, Kumar CSSR, Spivey JJ (2012) Synthesis,
characterization, and testing of supported Au catalysts prepared from atomically-tailored
Au 38 (SC 12 H 25 ) 24
clusters. Phys Chem Chem Phys 14(5):1627-1634. doi: 10.1039/
C1CP22438G
89. Tlahuice-Flores A, Black DM, Bach SBH, Jose-Yacaman M, Whetten RL (2013) Structure &
bonding of the gold-subhalide cluster I-Au 144 C l60 [z]. Phys Chem Chem Phys 15(44):
19191-19195. doi: 10.1039/c3cp53902d
90. Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A (2013) Au 67 (SR) 35 nanomolecules:
characteristic size-specific optical, electrochemical, structural properties and first-principles
theoretical analysis. J Phys Chem A 117(2):504-517. doi: 10.1021/jp311491v
91. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T (2007) Origin of magic stability
of thiolated gold clusters: a case study on Au 25 (SC 6 H 13 ) 18 . J Am Chem Soc 129(37):
11322-11323. doi: 10.1021/ja073580+
92. Zeng C, Liu C, Pei Y, Jin R (2013) Thiol ligand-induced transformation of Au38(SC2H4Ph)
24 to Au36(SPh-t-Bu)24. ACS Nano 7(7):6138-6145. doi: 10.1021/nn401971g
93. Malatesta L, Naldini L, Simonetta G, Cariati F (1966) Triphenylphosphine-gold(0)/gold(I)
compounds. Coord Chem Rev 1(1-2):255-262. doi: 10.1016/S0010-8545(00)80179-4
94. Naldini L, Cariati F, Simonetta G, Malatesta L (1966) Gold-tertiary phosphine derivatives
with intermetallic bonds. Chem Commun 18:647-648. doi: 10.1039/c19660000647
95. Cariati F, Naldini L, Simonetta G, Malatesta L (1967) Ethyldiphenylphosphine-gold deri-
vatives with intermetallic bonds. Inorg Chim Acta 1(1):24-26. doi: 10.1016/S0020-1693(00)
93133-5
Search WWH ::




Custom Search