Chemistry Reference
In-Depth Information
2 MS-Based Analysis of Gold Nanoclusters Synthesised in the Condensed Phase . . . . . . . . 145
2.1 The Need for Net Charge to Allow for Analysis of Gold Nanoclusters via MS . . . 145
2.2 Top-Down and Bottom-Up Approaches for the Synthesis of Gas-Phase Gold
Nanoclusters . . . ........................................................................ 147
2.3 Thiolate Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.4 Phosphine Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.5 MS-Based Fragmentation Methods for the Production of Gas-Phase Gold
Cluster Ions ............................................................................ 161
2.6 Formation of Carbides, Hydroxides, Phosphides and Tellurides from
Miscellaneous Top-Down Approaches . .............................................. 164
3 Tools for Determining Structures and Their Application to Gold Cluster Ions .......... 165
3.1 MS-Based Fragmentation Methods . ................................................. 165
3.2 Ion Mobility ........................................................................... 170
3.3 IR Spectroscopy . ...................................................................... 172
3.4 UV-Vis Spectroscopy ................................................................ 173
3.5 Trapped Ion Electron Diffraction ..................................................... 175
3.6 Photoelectron Spectroscopy . ......................................................... 175
3.7 Thermochemistry ...................................................................... 179
4 Reactivity of Gold Cluster Ions . . .......................................................... 180
4.1 Reactions of Bare Gold Cluster Ions: Overview . . ................................... 183
4.2 Ligated Gold Cluster Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.3 Gold-Containing Bimetallic Cluster Ions . . .......................................... 199
4.4 Catalysis by Gold Cluster Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5 From the Gas Phase to Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.1 MS-Directed Synthesis of Gold Clusters ............................................. 206
5.2 MS-Selected Deposition of Gold Cluster Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6 Conclusions .................................................................................. 211
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Abbreviations
2D Two-dimensional
3D Three-dimensional
AuNP Gold nanoparticle
BINAP ( )-2,2 0 -Bis(diphenylphosphino)-1,1 0 -binapthylene
BTBC Borane tert -butylamine complex
CID Collision-induced dissociation
ClAuPPh 3 Chlorotriphenylphosphinegold(I)
DFT
Density functional theory
DLS
Direct light scattering
DMA
Differential mobility analysis
DMG
N,N -Dimethylglycine
DMSO
Dimethylsulfoxide
dppe
1,2-Bis(diphenylphosphino)ethane
dppm
Bis(diphenylphosphino)methane
dppp
1,3-Bis(diphenylphosphino)propane OR 1,5-Bis(diphenylphosphino)
pentane
EA
Electron affinity
EI
Electron ionisation
Search WWH ::




Custom Search