Information Technology Reference
In-Depth Information
[ U e ][ U e ]
=
[ U e ][ U e ]
=
[ I ]
,
[ U h ][ U h ]
=
[ U h ][ U h ]
=
[ I ]
,
(2
.
73)
where [ I ] is the identity matrix
10
01
[ I ]
=
.
This implies that [ U e ] and [ U h ] are unitary matrices: their conjugate matrices
coincide with their inverse matrices and they are commutative with their conjugate
matrices.
Now we shall derive impedance equation for the normalized eigenfields. Accord-
ing to (2.64),
a E 1 +
a H 1 +
b E 1 e i E
b H 1 e i H h 1
E τ 1 =
e 1
H τ 1 =
a E 2 +
a H 2 +
b E 2 e i E e 2
b H 2 e i H h 2 .
E τ 2 =
H τ 2 =
Substituting these relations into the equation E τ m
=
[ Z ] H τ m ,
m
=
1
,
2, we
write
[ Z ] h 1 = 1 e 1 ,
[ Z ] h 2 = 2 e 2 ,
(2
.
74)
where
a E 1 +
a E 2 +
b E 1
b E 2
e i ( E H )
e i ( E H )
1 =
a H 1 +
,
2 =
a H 2 +
.
b H 1
b H 2
In matrix form
[ Z ][ U h ]
=
[ U e ][
]
,
(2
.
75)
where [
] is a diagonal matrix:
1
0
[
]
=
.
0
2
Multiplying (2.75) on the right by [ U h ], we get
=
.
[ Z ]
[ U e ][
] [ U h ]
(2
76)
 
Search WWH ::




Custom Search