Information Technology Reference
In-Depth Information
E xm = m H ym ,
E ym =− m H xm ,
m
=
1
,
2
,
(2
.
41)
where
ς m is the complex principal value (eigenvalue, principal impedance) of the
impedance tensor [ Z ]
.
Thus,
= m 01
H τ m ,
E τ m =
[ Z ] H τ m
m
=
1
,
2
.
(2
.
42)
10
Rotating the magnetic eigenfield H τ m and the impedance [ Z ] through
± /
2, we
obtain the Adam formulation (1.16) of the eigenstate problem
[ Z ] H τ m = m
H τ m ,
m
=
1
,
2
,
(2
.
43)
which coincides with the standard formulation (2.2). Here, with account for (1.1 6),
H y
H τ =
[ R (
/
2)] H τ =
H x
Z xy
Z xx
[ Z ]
=
[ Z ][ R (
/
2)]
=
.
Z yy
Z yx
Writing (2.43) in full, we get
Z xx H xm +
( Z xy m ) H ym =
0
,
(2
.
44)
( Z yx + m ) H xm +
Z yy H ym =
0
,
m
=
1
,
2
.
Let the determinant of this uniform system be zero. Then
2
m
( Z xy
Z yx )
m +
( Z xx Z yy
Z xy Z yx )
=
0
,
m
=
1
,
2
.
(2
.
45)
Solving this characteristic equation, we find the complex principal values (eigen-
values) of the tensor [ Z ]:
( Z xy Z yx ) 2
I 3
I 3 +
4I 2
Z xy Z yx +
4( Z xx Z yy Z xy Z yx )
1
2
1 =
=
2
( Z xy Z yx ) 2
I 3
I 3
4I 2
Z xy Z yx
4( Z xx Z yy Z xy Z yx )
1
2
2 =
=
2
(2
.
46)
tr Z
expressed in terms of rotational invariants I 3
=
=
Z xy
Z yx and I 2
=
=
Z xx Z yy
Z xy Z yx .
det [ Z ]
 
Search WWH ::




Custom Search