Information Technology Reference
In-Depth Information
Z int
xx H int
Z int
xy H int
E x =
+
x
y
Z int
yx H int
Z int
yy H int
E y =
+
,
x
y
where
5 J E2
x
Z N J H2
y
( J E2
x
J H1
y
J E1
x
J H2
y
0
.
+
)
Z int
xx
=
0
.
25
+
0
.
5( J H2
x
+
J H1
y
)
+
( J H2
x
J H1
y
J H1
x
J H2
y
)
Z N (0
.
5
+
J H2
x
)
+
0
.
5 J E1
x
+
( J E1
x
J H2
x
J E2
x
J H1
x
)
Z int
xy
=
.
+
.
5( J H2
x
+
J H1
y
+
( J H2
x
J H1
y
J H1
x
J H2
y
0
25
0
)
)
5 J E2
y
J H1
y
( J E2
y
J H1
y
J E1
y
J H2
y
0
.
Z N (0
.
5
+
)
+
)
Z int
yx =
0
.
25
+
0
.
5( J H2
x
+
J H1
y
)
+
( J H2
x
J H1
y
J H1
x
J H2
y
)
5 J E1
y
Z N J H1
x
( J E1
y
J H2
x
J E2
y
J H1
x
0
.
+
+
)
Z int
yy
=
) .
0
.
25
+
0
.
5( J H2
x
+
J H1
y
)
+
( J H2
x
J H1
y
J H1
x
J H2
y
Thus, we have the complex-valued tensor Z int that transforms the horizontal
internal magnetic field H int
τ
into the horizontal electric field E τ :
E τ = Z int H int
τ .
(11
.
43)
With a knowledge of magnetic tensor [ M ], it is possible to establish relations
between the impedance tensors Z int and [ Z ]. Let us menage to locate the base site
within an undistorbed area where H ( x B
,
=
H N
=
2 H ext
τ .
y B )
Then at any observation
site
H int
τ
( x
,
y )
=
H τ ( x
,
y )
0
.
5 [ M ( x B ,
y B |
x
,
y ) ] H τ ( x
,
y )
.
(11
44)
=
([ I ]
0
.
5 [ M ( x B ,
y B |
x
,
y ) ]) H τ ( x
,
y )
.
So, in view of (11.43)
= Z int ( x
y ) H int
τ
E τ ( x
,
y )
,
( x
,
y )
= Z int ( x
y ) ([ I ]
|
,
0
.
5 [ M ( x B
,
y B
x
,
y ) ]) H τ ( x
,
y )
=
,
,
,
[ Z ( x
y )] H τ ( x
y )
(11
.
45)
whence
= Z int ( x
y ) ([ I ]
[ Z ( x
,
y )]
,
0
.
5 [ M ( x B
,
y B
|
x
,
y ) ])
(11
.
46)
and
Z int ( x
y ) =
y ) ]) 1
,
,
.
,
y B | x
,
.
.
[ Z ( x
y )] ([ I ]
0
5 [ M ( x B
(11
47)
 
Search WWH ::




Custom Search