Information Technology Reference
In-Depth Information
where
10
01
0
Z xx Z xy
Z yx Z yy
1
10
[ I ]
=
[ R (
/
2]
=
[ Z ( x
,
y )]
=
y ) =
1
2 S 1 ( x
( x
,
,
y ) [ R (
π/
2][ Z ( x
,
y )]
and
H int
τ
H int
τ
H ext
τ
H ext
τ
,
=
,
,
,
=
,
,
,
( x
y )
( x
y
0)
( x
y )
( x
y
0)
H τ ( x
,
y )
=
H τ ( x
,
y
,
0)
E τ ( x
,
y )
=
E τ ( x
,
y
,
0)
.
Now we gain the benefit from the magnetic tensor
[ M ( x
,
y
|
x B ,
y B )] defin-
ing the relation between the horizontal magnetic fields H τ ( x
,
y ) and H τ ( x B ,
y B )
at
two
sites:
at
a
site
O( x
,
y )
and
at
a
base
site
B( x B ,
y B ).
Substituting
[ M ( x
,
y
|
x B ,
y B )] H τ ( x B ,
y B )for H τ ( x
,
y ), we rewrite (11.33) in the form
=
y ) [ M ( x
H int
τ
( x
,
y )
( x
,
,
y
|
x B ,
y B )] H τ ( x B ,
y B )
a
(11
.
34)
= [ I ]
y ) [ M ( x
H ext
τ
( x
,
y )
( x
,
,
y
|
x B ,
y B )] H τ ( x B ,
y B )
.
b
y B ) be given at the base site (say, from the
TEM-sounding). Then we can turn to (11.33 b ) and determine the external magnetic
field H ext
τ
Let the sediments conductance S 1 ( x B ,
y B ) at the base site. Taking into account that H ext
τ
( x B ,
is uniform in the
model excited by a plane wave, we get by virtue of (11.33 b ):
= [ I ]
y B ) H τ ( x B
H ext
τ
( x B
,
,
y B )
.
(11
.
35)
Using (11.35), we obtain the internal magnetic field H int
τ
( x
,
y ) at any of observa-
tion sites:
+
y B ) }
H int
τ
H ext
τ
|
( x
,
y )
=
H τ ( x
,
y )
={
[ M ( x
,
y
x B
,
y B )]
[ I ]
( x B
,
H τ ( x B
,
y B )
.
(11
.
36)
,
y B ) from (11.33 b ) and (11.36), and derive a redundant
matrix equation that gives unknown S 1 ( x
Finally we exclude H τ ( x B
,
,
,
y | x B
,
y ) with known [ Z ]
[ M ( x
y B )]
and S 1 ( x B
,
y B ):
y ) [ M ( x
+
y B ) .
( x
,
,
y
|
x B ,
y B )]
=
[ M ( x
,
y
|
x B ,
y B )]
[ I ]
( x B ,
(11
.
37)
Solving this equation, we obtain
S 1 ( x
S 1 ( x
,
y )
+
,
y )
S 1 ( x
,
y )
=
,
(11
.
38)
2
 
Search WWH ::




Custom Search