Information Technology Reference
In-Depth Information
H y ) z = h 1 and find S 1 from
(11.24). The problem is easily converted to the spectral domain. The Fourier spectra
for the electromagnetic field are
E y ) z = h 1
E y ) z = 0
E τ ( E x ,
=
E τ ( E x ,
into H τ ( H x ,
e y ) z = h 1 =
E y ) z = h 1 e i ( k x x + k y y ) dx dy
e τ ( e x ,
E τ ( E x ,
−∞
−∞
(11
.
25)
h y ) z = h 1 =
H y ) z = h 1 e i ( k x x + k y y ) dx dy
h τ ( h x ,
H τ ( H x ,
,
−∞
−∞
where k x , k y are the spatial frequencies. Note that there exists the linear relation
between h and e (Berdichevsky and Dmitriev, 2002):
Y xx
Y e
Y
Y xy
=
=
,
.
h
(11
26)
Y yx
Y yy
where Y is the spectral admittance tensor. Its components are
Y TM
Y TM
k x k y
k x +
k x
k x +
Y xx =−
Y xy =−
Y TE
Y TM
Y TE
+
k y
k y
k y
k x +
Y TM
Y TM
,
k x k y
k x +
Y xy =
Y yy =
Y TM
Y TE
Y TE
k y
k y
(11
.
27)
where Y TM
and Y TE
are the spectral admittances in the TM- and TM-modes defined
from the Riccati equations:
k x +
Y TM
dY TM
dz
2
i
o
1
k y
=−
z
h 1
(11
.
28)
k x +
dY TE
dz
o Y TE
2
i
o
i
o
k y
+
i
=−
z
h 1 .
e y ) z = h 1
e τ ( e x ,
Thus,
defining
the
spectum
of
the
known
electric
field
E y ) z = h 1 and determining the spectral admittance tensor Y , we can calcu-
late the spectrum h τ ( h x ,
E τ ( E x ,
h y ) z = h 1
and compute the magnetic field
Search WWH ::




Custom Search