Information Technology Reference
In-Depth Information
We have
ln Z ( x , y , ln T ) = ln | Z ( x , y , ln T ) | e i arg Z ( x , y , ln T )
= ln | Z ( x , y , ln T ) | + i arg Z ( x , y , ln T )
ln Y ( x , y , ln T ) = ln | Y ( x , y , ln T ) | e i arg Y ( x , y , ln T )
= ln | Y ( x , y , ln T ) | + i arg Y ( x , y , ln T )
W ( x , y ,
=
Re W ( x , y ,
+ i Im W ( x , y ,
ln T )
ln T )
ln T )
ln
A ( x , y ,
ln T )
,
103)
where Z is a component of t he tensor [ Z ] (for instance, Z xy ) or its scalar invari-
ant (for instance, Z eff
(10
.
Z xx Z yy
Z xy Z yx ), Y is a component of the tensor
[ Y ] (for instance, Y xy ) or its scalar invariant that re duces to the Tikh onov-Cagnard
=
admittance in the 1D-model (for instance, Y eff = Y xx Y yy
Y xy Y yx ), W is a com-
ponent o f the tippe r W (for instance, W zx ) or its scalar invariant (for instance,
W
W zx +
A is a component of the apparent resistivity (for instance,
xy ) or one of its scalar invariant (for instance,
=
W zy ),
2
/ o ).
The impedance, admittance, tipper and apparent-resistivities metrics (misfits) are
defined as
eff = |
Z eff |
Z ( x , y , T ) Z ( x , y , T )
2
R
+ [arg Z ( x , y , ln T ) arg Z ( x , y , ln T )] 2
ln Z ( x , y , ln T )
| Z ( x , y , ln T ) |
2
= X Y
T max
dT
T
dydx
T min
(10
.
104)
Y ( x , y , T ) Y ( x , y , T )
2
R
ln T )] 2
ln Y ( x , y ,
2
ln T )
| Y ( x , y , ln T ) |
= X Y
T max
dT
T
[arg Y ( x
+
,
y
,
ln T )
arg Y ( x
,
y
,
dydx
T min
(10
.
105)
T )
2
R
W ( x
,
,
,
,
y
T )
W ( x
y
=
X
T max
ln T )] 2 dT
T
[Re W ( x
,
y
,
ln T )
Re W ( x
,
y
,
dydx
(10
.
106)
Y
T min
+ X Y
T min
T max
ln T )] 2 dT
T
[Im W ( x
,
y
,
ln T )
Im W ( x
,
y
,
dydx
 
Search WWH ::




Custom Search