Information Technology Reference
In-Depth Information
m
1 T min , >
T m =
1
,
m
[1
,
M ]
.
(10
.
93)
Then,
ln
arg Z (ln T 1 )] 2
2
Z (ln T 1 )
Z (ln T 1 )
Z ( T )
1
2 ln
2
R
Z ( T )
[arg Z (ln T 1 )
=
+
ln
arg Z (ln T m )] 2
2
M
1
Z (ln T m )
Z (ln T m )
[arg Z (ln T m )
+
ln
+
m = 2
ln
arg Z (ln T M )] 2
2
Z (ln T M )
Z (ln T M )
1
2 ln
[arg Z (ln T M )
+
+
,
(10
.
94)
where ln
is a distance between adjacent measurements.
Similarly, we can define R - norm for the admittance:
R
L 2 =
L 2 +
L 2 . .
=
|
|
Y ( T )
ln Y (ln T )
ln
Y (ln T )
arg Y (ln T )
(10
.
95)
The admittance metric (misfit) is defined as
Y ( T )
2
R
Y ( T )
ln
Y (ln T )
arg
arg Y (ln T )
2
L 2
2
L 2
Y (ln T )
|
|
=
ln
Y (ln T )
+
(10
.
96)
ln
arg Y (ln T ) 2 dT
2
T max
Y (ln T )
Y (ln T )
+ arg Y (ln T )
=
T ,
T min
where Y ( T ) and Y ( T ) are admittances obtained from the field measurements and
model computations. In discrete representation we write
ln
arg Y (ln T 1 )] 2 ln
2
Y (ln T 1 )
Y (ln T 1 )
Y ( T )
Y ( T )
1
2
T 2
T 1
2
R
[arg Y (ln T 1 )
=
+
ln
+ [arg Y (ln T m ) arg Y (ln T m )] 2 ln
2
M
1
Y (ln T m )
Y (ln T m )
1
2
T m + 1
T m 1
+
m
=
2
ln
arg Y (ln T M )] 2 ln
2
Y (ln T M )
Y (ln T M )
1
2
T M
T M 1 ,
(10
[arg Y (ln T M )
+
+
.
97)
where T 1 =
=
T min and T M
T max . On a logarithmic uniform grid (10.93), we have
 
Search WWH ::




Custom Search