Information Technology Reference
In-Depth Information
The principal rotational invariants of the magnetotelluric impedance tensor are
(Berdichevsky, 1968; Sharka and Menvielle, 1997):
I 1 =
tr [ Z ]
= Z xx + Z yy
a
I 2 =
det [ Z ]
= Z xx Z yy Z xy Z yx
b
(1
.
29)
tr [ Z ]
Z xx +
Z yy =
I 3 =
=
tr [ Z ][ R (
/
2)]
=
Z xy Z yx ,
c
where tr [ Z ] and det [ Z ] are the trace and determinant of the impedance tensor [ Z ],
while tr [ Z ] is the trace of the Adam impedance tensor [ Z ].
Using (1.29), we introduce the effective impedance Z eff and the Berdichevsky
impedance Z brd :
Z eff = Z xx Z yy
Z xy Z yx ,
(1
.
30)
Z xy
Z yx
Z brd =
Z 1 =
.
2
These three independent invariants can be supplemented with the quadratic
invariant derived from (1.29):
I 1 +
I 3
= Z xx + Z xy + Z yx + Z yy ,
I 4 =
2I 2 =
tr [ C ]
(1
.
31)
[ Z ][ Z ] T , T denotes the transposition.
Since [ Z ] is determined by eight independent real-valued elements, the num-
ber of independent real rotational invariants should be less than eight. Sharka and
Menvielle (1997) proved that the maximum number of the real independent invari-
ants is equal to seven. They suggested the following standard set of independent
rotational invariants:
where tr [ C ] is the trace of the tensor [ C ]
=
J 1 =
2Re Z brd =
Re I 3 =
Re Z xy
Re Z yx
a
J 2 =
2Im Z brd =
Im I 3 =
Im Z xy
Im Z yx
b
J 3 =
tr [Re Z ]
=
Re I 1 =
Re Z xx +
Re Z yy
c
J 4 =
tr [Im Z ]
=
Im I 1 =
Im Z xx +
Im Z yy
d
(1
.
32)
J 5 =
det [Re Z ]
=
Re Z xx Re Z yy
Re Z xy Re Z yx
e
J 6 =
det [Im Z ]
=
Im Z xx Im Z yy
Im Z xy Im Z yx
f
J 7 =
Im det [ Z ]
=
Im ( Z xx Z yy
Z xy Z yx )
,
g
where
Re Z xx
Im Z xx
Re Z xy
Im Z xy
=
,
=
.
[Re Z ]
[Im Z ]
Re Z yx
Re Z yy
Im Z yx
Im Z yy
 
Search WWH ::




Custom Search