Information Technology Reference
In-Depth Information
anomalies). Thus, we have three independent formulations of the inverse problem,
separating induction and galvanic anomalies of different physical origin.
1. MT inversion (TE-mode): the conductivity
( y
,
z ) is found from the longitu-
dinal impedance Z . To determine the operator Z {
y
,
z
=
0
, ,
( y
,
z )
}
, the longi-
tudinal impedance is written in the form
z = 0
E x ( y
,
z
=
0
,
)
E x ( y
,
z
,
)
Z ( y
,
z
=
0
,
)
=
) =
i
o
,
(10
.
10)
E x ( y
,
z
,
)
H y ( y
,
z
=
0
,
z
where E x ( y
,
z
,
) is obtained from the Helmholtz equations
2 E x ( y
,
,
+
2 E x ( y
,
,
z
)
z
)
+
i
o
N ( z ) E x ( y
,
z
,
)
=
0
,
| y | >
l
,
y 2
z 2
2 E x ( y
2 E x ( y
,
z
,
)
+
,
z
,
)
+
i
o
( y
,
z ) E x ( y
,
z
,
)
=
0
|
y
| ≤
l
(10
y 2
z 2
.
11)
with the conditions at infinity
E x ( z
E x ( y
,
z
,
)
,
)
,
E x ( y
,
z
,
)
0
(10
.
12)
z →∞
| y |→∞
and the boundary conditions
E x ( y
,
z
,
)
[ E x ( y
,
z
,
)] S =
0
,
S =
0
.
(10
.
13)
n
Here, E x ( z
) is the normal electric field, and n is the normal to the bound-
ary S between blocks or layers of different conductivities. The square brackets in
(10.13) indicate a jump of a function at the boundary S . The anomalous electric field
E x ( y
,
E x ( z ) satisfies in the air the radiation condition.
For the longitudinal impedance we have
,
z )
=
E x ( y
,
z )
E x ( z
,
)
Z ( y
,
z
,
)
Z N ( z
,
)
=
) ,
(10
.
14)
H y ( z
,
| y |→∞
) and H y ( z
where Z N ( z
,
,
), are the normal (one-dimensional) impedance and the
normal magnetic field.
2. MV inversion (TE-mode): the conductivity
( y
,
z ) is found from the tipper
W zy . To determine the operator W zy {
y
,
z
=
0
, ,
( y
,
z )
}
, the tipper is written in the
form
z = 0
E x ( y
,
z
,
)
H z ( y
,
z
=
0
,
)
y
W zy ( y
,
z
=
0
,
)
=
) =−
,
(10
.
15)
E x ( y
,
z
,
)
H y ( y
,
z
=
0
,
z
 
Search WWH ::




Custom Search