Information Technology Reference
In-Depth Information
v
o h 2 hf 4
π
i
E x ( y )
E x
E x ( y )[ S 1 ( y )
S 1 ] dy
=
E x ( y )
=
(
|
y
| − v
) 2
v
v
h 2 f 2
E x ( y )[ S 1 ( y )
S 1 ] dy ,
=−
Z N
π
(
|
y
| − v
) 2
v
v
h 2 f 2
H y ( y )
E x ( y )[ S 1 ( y )
S 1 ] dy ,
=−
.
(7
57)
π
(
|
y
| − v
) 2
v
v
2 h 2 hf 4
E x ( y )[ S 1 ( y )
S 1 ] dy
H z ( y )
=−
π
(
|
y
| − v
) 3
v
v
2 h 2 f 2
Z N
E x ( y )[ S 1 ( y )
S 1 ] dy ,
=−
i
o
π
(
|
y
| − v
) 3
v
whence
E x ( y )
H y
( y ) =
Z N
a
(7
.
58)
H z
dH y
dy
i
o
=
Z N .
b
Equation (7.58a) means that the Leontovich condition (Leontovich, 1948) is sat-
isfied in the far zone
The ratio between E x and H y equals the
normal impedance Z N no matter how strong the magnetotelluric anomalies are. Here
the longitudinal impedance Z , defined by magnetotelluric ratio E x /
|
y
| − v
>> h eff .
H y , coincides
with the normal impedance Z N :
Z N H y ( y )
Z N H y ( y )
E x ( y )
E x ( y )
+
E x ( y )
H y ( y ) =
+
Z ( y )
=
( y ) =
=
Z N .
(7
.
59)
H y
( y )
+
H y
H y
( y )
+
H y
( y )
Equation (7.58b) suggests that along with estimation (7.59), we can estimate Z N
using the magnetovariational ratio (1.3). Taking into account that
H y
y
=
0, we
write
H z
dH y
dy
H z
H z
dH y
dy
i
o
=−
i
o
=−
i
o
=
Z N
.
(7
.
60)
dH y
dy
dH y
dy
+
Note that (7.60) is valid for a field with quadratic spatial variation of H y , while
(7.59) is valid for a field with linear spatial variation of H y (Weidelt, 1978; Dmitriev
 
Search WWH ::




Custom Search