Information Technology Reference
In-Depth Information
where
m is the complex principal value (eigenvalue) of the tensor [ M ( r
|
r B )]. In
the x
,
y
coordinates
H xm ( r )
= m H xm ( r B )
H ym ( r )
= m H ym ( r B )
m
=
1
,
2
.
(4
.
52)
Substituting (4.52) in (4.42), we get
( M xx m ) H xm ( r B )
+
=
M xy H ym ( r B )
0
(4
.
53)
M yx H xm ( r B )
+
( M yy m ) H ym ( r B )
=
0
,
m
=
1
,
2
.
Assuming the determinant of this uniform system of linear equations to be zero, we
obtain
m
( M xx +
M yy )
m +
( M xx M yy
M xy M yx )
=
0
,
(4
.
54)
whence
( M xx +
( M xx +
M yy )
+
M yy ) 2
4( M xx M yy
M xy M yx )
1 =
,
2
( M xx +
(4
.
55)
( M xx +
M yy )
M yy ) 2
4( M xx M yy
M xy M yx )
2 =
.
2
The principal directions of the tensor [ M ] are determined as directions of the
major axes of the polarization ellipses of the magnetic eigenfields H τ 1 ( r ) and
H τ 2 ( r ). With (4.52) and (4.53), the polarization ratios for H τ 1 ( r ) and H τ 2 ( r )are
H ym ( r B ) = m M xx
H ym ( r )
H xm ( r ) =
H ym ( r B )
P H m ( r )
=
M xy
(4
.
56)
m M yy = m M xx + M yx
M yx
=
m + M xy M yy ,
m
=
1
,
2
.
Substituting (4.56) into (2.18), we evaluate angles
H 1 and
H 2 made by major axes
of the polarization ellipses with the x -axis:
H m cos
H m
tan2
=
tan2
,
m
=
1
,
2
(4
.
57)
H m
P H m ,
where tan
H m
=
H m
=
arg P H m .
The values of
are taken within quad-
H m
H m
rant I (0
H m
/
2) if cos
0 or within quadrant IV (0
> H m
≥− /
2) if
H m < 0.
Finally we determine the ellipticity parameters
cos
H 1 and
H 2 . In accord with (2.19),
H m
=
tan
H m ,
m
=
1
,
2
,
(4
.
58)
where
 
Search WWH ::




Custom Search