Information Technology Reference
In-Depth Information
Re Z yy Im Z xy
Re Z xy Im Z yy
Re Z yy Im Z xy
Re Z xy Im Z yy
xy =
Re Z xy Re Z yx =
Re Z xy Re Z yx ,
Re Z xx Re Z yy
Re Z xx Re Z yy
Re Z xx Im Z yx
Re Z yx Im Z xx
Re Z xx Im Z yx
Re Z yx Im Z xx
yx =
Re Z xy Re Z yx =
Re Z xy Re Z yx ,
Re Z xx Re Z yy
Re Z xx Re Z yy
Re Z xx Im Z yy
Re Z yx Im Z xy
Re Z xx Im Z yy
Re Z yx Im Z xy
yy =
Re Z xy Re Z yx =
Re Z xy Re Z yx .
(3
Re Z xx Re Z yy
Re Z xx Re Z yy
.
59)
It is seen that [
] is independent of local distortions. Without any assumptions
of regional dimensionality we may derive the tensor [
] immediately from the
superimposition tensor [ Z S ] as a true performance of the regional (one-dimensional,
two-dimensional or three-dimensional) impedance [ Z R ].
Rotating the tensor [
] clockwise trough an angle
, we get
)] 1
,
.
[
(
)]
=
[ R (
)] [
][ R (
(3
60)
from which
xx (
)
=
+ 3 sin 2
+
4 cos 2
2
xy (
)
=
+
3 cos 2
4 sin 2
1
(3
.
61)
yx (
)
=−
+
3 cos 2
4 sin 2
1
yy (
)
=
3 sin 2
4 cos 2
,
2
where
+
=
=
xy
yx
xx
yy
,
1
2
2
2
(3
.
62)
= xy + yx
2
= xx yy
2
.
3
4
The rotational invariants of the tensor [
]are
J 14 =
=
2 = xx + yy ,
tr[
]
2
J 15 =
= xx yy xy yx ,
J 16 = xy yx ,
J 17 = =
det[
]
(3
.
63)
xx
+
xy
+
yx
+
yy
.
Take a model with a horizontally homogeneous (1D) medium containing local
three-dimensional near-surface inhomogeneities. In this model, Z xx =
Z yy =
0 and
Z xy =−
Z yx
Z R , where Z R
=
is the regional one-dimensional impedance. Then,
according to (3.60),
 
Search WWH ::




Custom Search