Digital Signal Processing Reference
In-Depth Information
When the input x(n) is zero, X(z)
= 0; hence the second term on the right side
is zero, leaving only the first term due to initial conditions given. It is the z
transform of the zero input response y 0 i (n) .
The inverse z transform of this first term on the right side
0 . 02 z 1 y(
[0 . 3 y(
1 )
1 )
0 . 02 y(
2 ) ]
Y 0 i (z)
=
[1
0 . 3 z 1
+
0 . 02 z 2 ]
gives the response when the input is zero, and so it is the zero input response
y 0 i (n) . The inverse z transform of
X(z) [1 0 . 1 z 1 ]
0 . 02 z 2 ] =
Y 0 s (z)
[1
0 . 3 z 1
+
gives the response when the initial conditions (also called the initial states) are
zero, and hence it is the zero state response y 0 s (n) .
Substituting the values of the initial states and for X(z) , we obtain
[0 . 288 0 . 02 z 1 ]
[1 0 . 3 z 1
[0 . 288 z 2
0 . 02 z ]
z [0 . 288 z
0 . 02]
Y 0 i (z)
=
+ 0 . 02 z 2 ] =
+ 0 . 02 =
z 2
0 . 3 z
(z
0 . 1 )(z
0 . 2 )
and
X(z) [1 0 . 1 z 1 ]
[1 0 . 1 z 1 ]
z
Y 0 s (z)
=
0 . 02 z 2 ] =
[1
0 . 3 z 1
+
z
+
0 . 2
[1
0 . 3 z 1
+
0 . 02 z 2 ]
z [ z 2
z 2 (z
0 . 1 z ]
0 . 1 )
=
0 . 02 ) =
(z
+
0 . 2 )(z 2
0 . 3 z
+
(z
+
0 . 2 )(z
0 . 1 )(z
0 . 2 )
We notice that there is a pole and a zero at z
= 0 . 1 in the second term on the
right, which cancel each other, and Y 0 s (z) reduces to z 2 / [ (z
+ 0 . 2 )(z
0 . 2 ) ]. We
divide Y 0 i (z) by z , expand it into its normal partial fraction form
Y 0 i (z)
z
[0 . 288 z
0 . 02]
0 . 376
(z
0 . 088
(z
=
0 . 2 ) =
0 . 2 )
(z
0 . 1 )(z
0 . 1 )
and multiply by z to get
0 . 376 z
(z
0 . 088 z
(z
Y 0 i (z)
=
0 . 2 )
0 . 1 )
Similarly, we expand Y 0 s (z)/z
=
z/ [ (z
+
0 . 2 )(z
0 . 2 ) ] in the form
0 . 5 /(z
+
0 . 2 )
+ 0 . 5 /(z
0 . 2 ) and get
z 2
0 . 5 z
(z
0 . 5 z
Y 0 s (z)
=
0 . 2 ) =
+ 0 . 2 ) +
(z
+ 0 . 2 )(z
(z
0 . 2 )
= [0 . 376 ( 0 . 2 ) n
0 . 088 ( 0 . 1 ) n ] u(n)
Therefore, the zero input response is y 0 i (n)
0 . 2 ) n
( 0 . 2 ) n ] u(n) .
and the zero state response is y 0 s (n)
= 0 . 5[
(
+
Search WWH ::




Custom Search